
Esame di Fondamenti di Costruzione di Macchine: 10 giugno 2025.

Cognome			
Nome			
Matricola		,	

Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. <u>Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono corrette.</u> [ogni quesito completamente esatto vale 2 punti]

Quesito 1

Data la struttura in figura 1, caricata da forze e momenti di cui non si conoscono le entità. Stabilire se i seguenti diagrammi del momento flettente (a-f) sono ammissibili:

Quesito 2

Si consideri la trave di figura, di momento di inerzia J e di materiale avente modulo elastico E. Si calcoli il valore del carico P sapendo che esso provoca una rotazione dell'estremità libera di 1 rad.

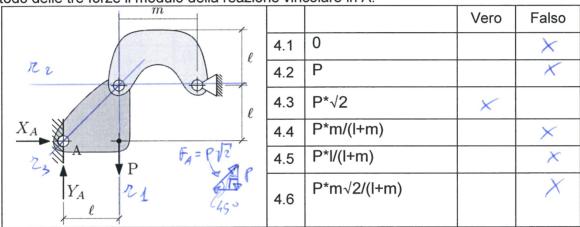
ℓ				vero	falso
		2.1	$P = \frac{EJ}{l^2} \cdot (2 \ rad)$	X	
	P 1 rad	2.2	$P = \frac{EJ}{l^3} \cdot (3 rad)$		X
<u></u>		2.3	$P = \frac{EJ}{l^4} \cdot (4 \ rad)$		X
		2.4	$P = \frac{EJ}{l^3} \cdot (2 \ rad)$		X
		2.5	$P = \frac{EJ}{l} \cdot (1 \ rad)$		X
		2.6	P = 0 N		X

$$J \Box = \frac{35.15^{3}}{12} mm^{4}; \quad Jo = \frac{7.10^{4}}{64} mm^{4}$$

$$W = \frac{5 \Box - J_{0}}{7.5} = 1247,05 mm^{3}$$

Quesito 3

Considerando l'immagine (quote in mm), calcolare il modulo di resistenza della sezione


rispetto all'asse x-x.

35			Vero	Falso
7.5	3.1	2782.00 mm ³		X
	3.2	7080.38 mm ³		X
	3.3	2866.15 mm ³		×
	3.4	53102.88 mm ³		X
	3.5	52612.00 mm ³		X
$\phi 10$	3.6	1181.60 mm ³		X

Quesito 4

Considerare la struttura di figura caricata da una forza esterna P. Determinare utilizzando il

metodo delle tre forze il modulo della reazione vincolare in A.

Quesito 5

Determinare il valore della coordinata x alla quale è posizionata la risultante delle due forze proposte in figura.

30 N			vero	falso
		80 mm		X
	5.2	-80 mm	×	
	5.3	16 mm		X
40 mm	5.4	-16 mm		×
20 N	5.5	24 mm		X
	5.6	-24 mm	-	X

$$X = \frac{-20.40}{(-20+30)}$$
 mm = -80 mm