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0.1 Shear stresses due to the St. Venant tor-
sion

The classical solution for the rectilinear beam subject to uniform tor-
sion predicts a displacement field that is composed by the superposition
of a) a rigid, in-plane1 cross section rotation about the shear centre,
named twist, whose axial rate is uniform, and b) an out-of-plane warp-
ing displacement that is uniform in the axial direction, whereas it varies
within the section; such warping displacement is zero in the case of ax-
isymmetric sections only (e.g. solid and hollow circular cross sections).

Due to the rigid nature of the in-plane displacements, the in-plane
strain components 𝜖𝑥, 𝜖𝑦, 𝜖𝑥𝑦 are zero; the in-plane stress components
𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, and the normal stress 𝜎𝑧 are also zero if 𝑧 is a direction
of orthotropy for the material – as it is assumed in the following. The
motion is internally restricted only due to the nonzero out-of-plane
shear stresses 𝜏𝑦𝑧 and 𝜏𝑧𝑥, that develop as an elastic reaction to the
associated strain components.

A more in-depth treatise of the topic involves the solution of an
plane, inhomogeneous Laplace partial differential equation with essen-
tial conditions imposed at the cross section boundary, which is beyond
the scope of the present contribution.

However, in the case of open- and closed- section, thin walled
beams, simplified solutions are available based on the assumptions that
a) the out-of-plane shear stresses are locally aligned to the wall mid-
surface - i.e. 𝜏𝑧𝑟 = 0 leaving 𝜏𝑧𝑠 as the only nonzero stress component2,
and b) the residual 𝜏𝑧𝑠 shear component is either constant by moving
through the wall thickness (closed section case), or it linearly varies
with the through-thickness coordinate 𝑟.

0.1.1 Solid section beam
TODO.

1the rotation vector is actually normal to the cross sectional plane; the in-plane
motion characterization refers to the associated displacement field.

2Here, the notation introduced in paragraph XXX for the thin walled section is
employed.
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Figure 1: Axial equilibrium for a portion of profile wall, in the case of
a closed, thin-walled profile subject to torsion.

0.1.2 Closed section, single-celled thin walled beam
The 𝜏𝑠𝑧 component is assumed uniform along the wall thickness, or,
equivalently, its deviation from the average value is neglected in cal-
culations.

In the case the material is non-uniform across the thickness, the
𝛾𝑠𝑧 shear strain is assumed uniform, whereas the 𝜏𝑠𝑧 varies with the
varying 𝐺𝑠𝑧 shear modulus.

In the absence of 𝜎𝑧, the axial equilibrium of a portion of beam
segment dictates that the shear flow 𝑡𝜏 remains constant along the
wall, i.e.

𝑡1𝜏1 = 𝑡2𝜏2

as depicted in Figure 1.
By skipping some further interesting observations (TODO) we may

just introduce the Bredt formula for the cross-section torsional stiffness

𝐾𝑡 = 4𝐴2

∮ 1
𝑡 𝑑𝑙 (1)

which is valid for single-celled, closed thin wall sections.
The peak stress is located at thinnest point along the wall, and
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equals
𝜏max = 𝑀𝑡

2𝑡min𝐴 (2)

.

0.1.3 Closed section, multi-celled thin walled beam
TODO. However, a lower bound for the stiffness of the multi-celled
thin walled beam may be obtained by fictitiosly severing the inner
walls, thus obtaining a single cell defined by the outer wall alone.

An upper bound for the stiffness is obtained by assuming each
shared inner wall as shear-rigid, and then by summing the stiffnesses of
each elementary closed loop, as they constituted independent profiles.
The shear-rigid nature of the inner walls is enforced by neglecting their
contribution to the circuital integral at the Bredt formula denominator.

0.1.4 Open section, thin walled beam
The shear strain component 𝛾𝑧𝑠 is assumed linearly varying across the
thickness; if the 𝐺𝑠𝑧 shear modulus is assumed uniform, such linear
variation characterizes the 𝜏𝑧𝑠 stress components too.

The average value along the thickness of the 𝜏𝑧𝑠 stress component
is zero, as zero is the shear flow as defined in the previous paragraph.

For thin enough open sections of uniform and isotropic material we
have

𝐾𝑇 ≈ 1
3 ∫

𝑙

0
𝑡3(𝑠)𝑑𝑠 (3)

If the thin-walled cross section may be described as a sequence of
constant thickness wall segments, the simplified formula

𝐾𝑇 ≈ 1
3 ∑

𝑖
𝑙𝑖𝑡3

𝑖 (4)

is obtained where 𝑡𝑖 and 𝑙𝑖 are respectively the length and the thickness
of each segment.

The peak value for the 𝜏𝑧𝑠 stress component is observed in corre-
spondence to thickest wall section point and it equates

𝜏max = 𝑀𝑡𝑡max
𝐾𝑇

(5)
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By applying the reported formulas to a rectangular section whose
span length is ten times the wall thickness, the torsional stiffness is
overestimated by slightly less than 7%; a similar relative error is re-
ported in terms of shear stress underestimation.
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