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0.1 Axial load and uniform bending

It is preliminarily noted that the elementary extensional-flexural solu-
tion is exact with respect to the Theory of Elasticity if the following
conditions hold:

• beam constant section;

• beam rectilinear axis;

• absence of locally applied loads;

• absence of shear resultants1 (i.e. constant bending moments);

• principal material directions of orthotropy are uniform along the
section, and one of them is aligned with the beam axis;

• the ν31 and the ν32 Poisson’s ratios2 are constant along the sec-
tion, where 3 means the principal direction of orthotropy aligned
with the axis. Please note that Eiνji = Ejνij , and hence νji 6= νij
for a generally orthotropic material.

Most of the above conditions are in fact violated in many textbook
structural calculations, thus suggesting that the elementary beam the-
ory is robust enough to be adapted to practical applications, i.e. limited
error is expected if some laxity is used in circumscribing its scope3.

The extensional-flexural solution builds on the basis of the following
simplifying assumptions:

• the in-plane4 stress components σx, σy, τxy are null;

• the out-of-plane shear stresses τyz, τzx are also null;

1A locally pure shear solution may be in fact superposed; such solution may
however not be available for a general cross section.

2We recall that νij is the Poisson’s ratio that corresponds to a contraction in
direction j, being a unitary extension applied in direction i in a manner that the
elastic body is subject to a uniaxial stress state.

3Measures for both the error and the violation have to be supplied first in order
to quantify the approximation.

4Both the in-plane and the out-of-plane expressions for the characterization of
the stress/strain components refer to the cross sectional plane.
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• the axial elongation εz linearly varies along the cross section,
namely

εz = a+ bx+ cy (1)

or, equivalently5, each cross section is assumed to remain planar
in the deformed configuration.

The three general constants a, b and c possess a physical meaning;
in particular a represents the axial elongation ε̄ as measured at the
centroid6, c represents the 1/ρx curvature7 whereas b represent the
1/ρy curvature, apart from its sign.

Figure 1 (c) justifies the equality relation c = 1/ρx; the beam axial
fibers with a ∆z initial length are elongated by the curvature up to
a ∆θ (ρx + y) deformed length, where ∆θρx equates ∆z based on the
length of the unextended fibre at the centroid. By evaluating the axial
strain value for a general fiber, it follows that εz = 1/ρx y.

In addition, Figure 1 (c) relates the 1/ρx curvature to the displace-
ment component in the local y direction, namely v, and to the section
rotation angle with respect to the local x axis, namely θ, thus obtaining

dθ

dz
=

1

ρx
, θ = −dv

dz
,

d2v

dz2
= − 1

ρx
(2)

Following analogous considerations, see 1 (e), we may similarly ob-
tain

dφ

dz
=

1

ρy
, φ = +

du

dz
,

d2u

dz2
= +

1

ρy
(3)

where φ is the cross section rotation about the local y axis, and u is
the x displacement component.

According to the assumptions in the preamble, a uniaxial stress
state is assumed, where the only nonzero σz stress component may be
determined as

σz = Ezεz = Ez

(
ε̄− 1

ρy
x+

1

ρx
y

)
(4)

5The axial, out-of-plane displacement ∆w =
∫

∆l
εzdz = ∆l (a+ bx+ cy) ac-

cumulated between two contiguous cross sections with an ∆l initial distance, is
consistent with that of a relative rigid body motion.

6or, equivalently, the average elongation along the section, in an integral sense.
7namely the inverse of the beam curvature radii as observed with a line of sight

aligned with the x axis. Curvature is assumed positive if the associated θ section
rotation grows with increasing z, i.e. dθ/dz > 0.
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Figure 1: A differential fibre elongation proportional to the y coor-
dinate induces a curvature 1/ρx on the normal plane with respect to
the x axis. A differential fibre contraction proportional to the x coor-
dinate induces a curvature 1/ρy on the normal plane with respect to
the y axis. The didascalic trapezoidal deformation modes (b) and (e)
clearly associate the differential elongation/contraction with the posi-
tive relative end rotation; they are however affected by a spurious shear
deformation as evidenced by the skewed corner.

3



i
i

“master” — 2020/4/20 — 19:14 — page 4 — #4 i
i

i
i

i
i

z

x

y
My

Mx

σzdAx
y

G

s∆z

y
My

Mxx

Figure 2: Positive x and y bending moment components adopt the
same direction of the associated local axes at the beam segment end
showing an outward-oriented arclength coordinate axis; at beam seg-
ment ends characterized by an inward-oriented local z axis, the same
positive bending moment components are locally counter-oriented to
the respective axes.
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Stress resultants may easily be evaluated based on Fig. 2 as

N =

∫∫

A
EzεzdA = EAε̄ (5)

Mx =

∫∫

A
EzεzydA = EJxx

1

ρx
− EJxy

1

ρy
(6)

My = −
∫∫

A
EzεzxdA = −EJxy

1

ρx
+ EJyy

1

ρy
(7)

where the combined material/cross-section stiffness moduli

EA =

∫∫

A
Ez(x, y) dA (8)

EJxx =

∫∫

A
Ez(x, y)yy dA (9)

EJxy =

∫∫

A
Ez(x, y)yx dA (10)

EJyy =

∫∫

A
Ez(x, y)xx dA (11)

may also be rationalized as the cross section area and moment of in-
ertia, respectively, multiplied by a suitably averaged Young modulus,
evaluated in the axial direction.

Those moduli simplify to their usual EzA,EzJ∗∗ analogues, where
the influence of the material and of the geometry are separated if the
former is homogeneous along the beam cross section.

From Eqn. 5 we obtain

ε̄ =
N

EA
. (12)

By concurrently solving Eqns. 6 and 7 with respect to the 1/ρx and
1/ρy curvatures, we obtain

1

ρx
=
MxEJyy +MyEJxy

EJxxEJyy − EJ2
xy

(13)

1

ρy
=
MxEJxy +MyEJxx

EJxxEJyy − EJ2
xy

(14)

1

ρeq
=

√
1

ρ2x
+

1

ρ2y
(15)
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Axial strain and stress components may then be obtained for any
cross section point by substituting the above calculated generalized
strain components ε̄, 1/ρx and 1/ρy holding for the extensional-flexural
beam into Eqn. 4.

As an alternative, the following
thus obtaining

σz = Ezεz (16)

= αMx + βMy + γN (17)

where

α
(
x, y, Ez, EJ∗∗

)
= Ez(x, y)

−EJxyx+ EJyyy

EJxxEJyy − EJ2
xy

(18)

β
(
x, y, Ez, EJ∗∗

)
= Ez(x, y)

−EJxxx+ EJxyy

EJxxEJyy − EJ2
xy

(19)

γ
(
x, y, Ez, EA

)
= Ez(x, y)

1

EA
. (20)

The peak axial strain is obtained at points farther from neutral axis
of the stretched section; such neutral axis may be graphically defined
as follows:

• the coordinate pair

(xN , yN ) ≡
(
ēρ2xρy
ρ2x + ρ2y

,−
ēρxρ

2
y

ρ2x + ρ2y

)
;

defines its nearest pass-through point with respect to the G cen-
troid; the two points coincide in the case ε̄ = 0.

• its orientation is defined by the unit vector

n̂‖ =
√
ρ2x + ρ2y

(
1

ρx
,

1

ρy

)
,

whereas the direction

n̂⊥ =
√
ρ2x + ρ2y

(
− 1

ρy
,

1

ρx

)
,

is orthogonal to the neutral axis, and oriented towards growing
axial elongations.
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The cross section projection on the (N, n̂⊥) line defines a segment
whose ends are extremal with respect to the axial strain.

If the bending moment and the curvature component vectors are
imposed to be parallel, i.e.

λ

[
Mx

My

]
=

[
1
ρx
1
ρy

]
=

1

EJxxEJyy − EJ2
xy

[
EJyy EJxy
EJxy EJxx

]

︸ ︷︷ ︸
[EJ ]

[
Mx

My

]
(21)

an eigenpair problem is defined that leads to the definition of the
principal directions for the cross sectional bending stiffness. In par-
ticolar, the eigenvectors of the [EJ ] matrix define the two principal
bending stiffness directions, and the associated EJ11, EJ22 eigenval-
ues constitute the associated bending stiffness moduli.

TODO: please elaborate...
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0.2 Stresses due to the shear cross section re-
sultants

In the presence of nonzero shear resultants, the bending moment ex-
hibits a linear variation with the axial coordinate z in a straight beam.
Based on the beam segment equilibrium we have

Sy =
dMx

dz
, Sx = −dMy

dz
, (22)

as rationalized in Fig. 4, with dz → 0 and Mx,My differentiable with
respect to z.

The linear variation of the bending-induced curvature in z causes
a likewise linear variation of the pointwise axial strain; stress variation
is also linear in the case of constant Ez longitudinal elastic modulus.

In particular, the differentiation with respect to z of σz as espressed
in Eqn. 17 returns

dσz
dz

= α
(
x, y, Ez, EJ∗∗

)
Sy − β

(
x, y, Ez, EJ∗∗

)
Sx (23)

since its α, β, γ factors are constant with respect to z; the bending
moment derivatives are here expressed in terms of the shear resultants,
as in Eqns. 22.

Figure 3 rationalizes the axial equilibrium for an elementary volume
of material; we have

dτzx
dx

+
dτyz
dy

+
dσz
dz

+ qz = 0 (24)

where, for the specific case, the distributed volumetric load qz is zero.
It clearly emerges from such relation that the shear stresses τzx, τyz,

that were null within the uniform bending framework, are non-uniform
along the section – and hence not constantly zero – in the presence of
shear resultants.

A treatise on the pointwise solution of a) the equilibrium equations
24, once coupled with b) the compatibility conditions and with c) the
the material elastic response, is beyond the scope of the present contri-
bution, although it has been derived for selected cross sections in e.g.
[1].
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τzx|P dydz

(
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∂y
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P
dy
)
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P ≡ (x, y, z)

dP ≡ (dx, dy,dz)

qzdxdydz
P + dP

Figure 3: Equilibrium conditions with respect to the axial z translation
for the infinitesimal volume extracted from the beam. In the case under
scrutiny, the distributed volume action qz is null.

0.2.1 The Jourawsky approach and its extension for a
general section

The aforementioned axial equilibrium condition, whose treatise is cum-
bersome for the infinitesimal volume, may be more conveniently dealt
with if a finite portion of the beam segment is taken into account, as
in Figure 4.

A beam segment is considered whose axial extent is dz; the beam
cross section is partitioned based on a (possibly curve, see Fig. 5)
line that isolates an area portion A∗ – and the related beam segment
portion – for further scrutiny; axial equilibrium equation may then be
stated for the isolated beam segment portion as follows

τ̄zit =

∫

A∗

dσz
dz

dA, (25)

where

τ̄zi =
1

t

∫

t
τzidr (26)

is the average shear stress acting in the z direction along the cutting
surface; i is the (locally normal) inward direction with respect to such

9
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t A∗

τ̄zi

Mx

My

Mx + dMx

My + dMy

Sx

Sx

Sy
Sy

z dσz = 0

Figure 4: Equilibrium conditions for the isolated beam segment por-
tion. It is noted that the null σz variation locus, dσz = 0, does not
coincide with the bending neutral axis in general. Also, the depicted
linear variation of dσz with the D distance from such null dσz locus
does not hold in the case of non-uniform Ez modulus.

τ̄zi τ̄zi

t tA∗ A∗

Figure 5: The curve employed for isolating the beam segment por-
tion defines the direction of the τzi components whose average value is
evaluated.

10



i
i

“master” — 2020/4/20 — 19:14 — page 11 — #11 i
i

i
i

i
i

a surface. Due to the reciprocal nature of the shear stresses, the same
τ̄zi shear stress acts along the cross sectional plane, and locally at the
cutting curve itself. These shear actions are assumed positive if inward
directed with respect to A∗.

The τ̄zit product is named shear flow, and may be evaluated along
a general cutting curve.

It is noted that, according to Eqn. 25, no information is provided
with regard to a) the τzr shear stress that acts parallel to the cutting
curve, nor b) the pointwise variation of τzi with respect of its average
value τ̄zi. If the resorting to more cumbersome calculation frameworks
is not an option, those quantities are usually just neglected; an in-
formed choice for the cutting curve is thus critical for a reliable appli-
cation of the method.

In the simplified case of a) uniform material and b) local x, y axes
that are principal axes of inertia (i.e. Jxy = 0), the usual formula is
obtained

τ̄zit =

∫

A∗

(
ySy
Jxx

+
xSx
Jyy

)
dA =

ȳ∗A∗

Jxx
Sy +

x̄∗A∗

Jyy
Sx, (27)

where ȳ∗A∗ and x̄∗A∗ are the first order area moments of the A∗ section
portion with respect to the x and y axes, respectively8.

0.2.2 Shear induced stresses in an open section, thin
walled beam

In the case of thin walled profiles, the integral along the isolated area
in Eqn. 25 may be performed with respect to the arclength coordinate
alone; the value the dσz/dz integrand assumes at the wall midplane is
supposed representative of its integral average along the wall thickness,
thus obtaining

τ̄zit = qzi =

∫ s

0

∫ t/2

−t/2

dσz
dz

drdς ≈
∫ s

0

dσz
dz

∣∣∣∣
r=0

tdς. (28)

Such assumed equivalence strictly holds for a) straight wall seg-
ments9 and b) a linear variation of the integrand along the wall, a

8According to the employed notation, (x̄∗, ȳ∗) are the centre of gravity coordi-
nates for the A∗ area.

9i.e. the Jacobian of the (s, r) 7→ (x, y) mapping is constant with r.
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condition, the latter, that holds if the material properties are homoge-
neous with respect to the wall midplane10; in the more general case,
the error incurred by this approach vanishes with vanishing thickness
for what concerns assumption a), whereas if the material is inhomoge-
neous, through-thickness averaged Ēz, Ḡzi moduli may be employed in
place of their pointwise counterpart.

If a thin walled section segment is considered such that it is not
possible to infer that the interfacial shear stress is zero at at least
one of its extremities, a further term needs to be considered for the
equilibrium, thus obtaining

τ̄zi(s)t(s) = q(s) =

∫ s

a

dσz
dz

tdς + τ̄zi(a)t(a)︸ ︷︷ ︸
qA

. (29)

In the case of open thin walled profiles, however, such a choice for the
isolated section portion is suboptimal, unless the qA term is known.

0.2.3 Shear induced stresses in an closed section, thin
walled beam

In the case of a closed thin walled, generally asymmetric section, the
search for a point along the wall at which the shear flow may be as-
sumed zero is normally not viable, and the employment of Eq. 29 in
place of the simpler Eq. 28 is unavoidable.

In this case, a parametric value for the τ̄iz shear stress is assumed
for a set of points along the cross section midcurve – one for each
elementary closed loop11 if the points are non-redundantly chosen12.

In the multicellular cross section example shown in Figure 6, two
elementary loops are detected; shear flows at the A, B points are para-
metrically defined as τAtA and τBtB , respectively.

The τ(s) shear stress at each point along the profile wall may then
be determined based on Eqn. 29 as a function a) of the shear resultant

10a linear dεz/dz axial strain variation is in fact associated to the curvature vari-
ation in z, and not an axial stress variation;

11i.e. a closed loop not enclosing any other closed loop.
12Redundancy may be pointed out by ideally cutting the cross section at these

points: if a monolithic open cross section is obtained, the point choice is not redun-
dant; if a portion of the section is completely isolated, and a loop remains closed,
the location of these points causes redundancy.
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A

B

(a) (b) (c) (d)

Su
1 Su

2 τuA τuB

≡ [1 stress unit ]

f;S1(s) f;S2(s) f;A(s) f;B(s)

Figure 6: Contributions to the τzi(s) shear stress along the profile
walls associated to a) a unit shear force component Su

1 applied along
the first principal axis of inertia, whose magnitude equals the product
of the cross section area and the unit stress, b) an analogous shear
force component Su

2 aligned with the second principal axis of inertia,
c) a unit shear stress τuA applied at the opposite fictitious cut surfaces
at A, and d) a unit shear stress τuB applied at the opposite fictitious
cut surfaces at B. Profile wall thickness is constant in the presented
example, thus producing a continuous shear stress diagram, whereas
continuity is rather aa unit shear stress τuA applied at the opposite
fictitious cut surfaces at a property of the shear flow.
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components Sx and Sy, and b) of the parametrically defined shear
stresses at the A,B points.

Due to the assumed linear response for the profile, superposition
principle may be employed in isolating the four elementary contribu-
tions to the shear stress flow along the section.

The first two elementary contributions f;Sx(s) and f;Sy(s) are re-
spectively due to the action alone of the x and y shear force compo-
nents, whose magnitudes Su

x and Su
y is assumed equal the product of

the stress unit (e.g. 1 MPa) and of the cross sectional area. Those
forces are assumed to act in the ideal absence of shear flow at points
where the latter is assumed as a parameter (points A and B in Figure
6).

Since the condition of zero shear flow is stress-compatible with an
opening in the closed section loop, the cross section may be idealized
as severed at the assumed shear flow points, and hence open. The
equilibrium-based solution procedure derived for the open thin-walled
section may hence be profitably applied.

A family of further elementary contributions, one for each of the
assumed shear stress points, may be derived by imposing zero para-
metric shear flow at all the points but the one under scrutiny, and in
the absence of externally applied shear resultants. The elastic problem
may be rationalized as an open – initially closed, then ideally severed
– thin walled profile, that is loaded by an internal constraint action
whose magnitude is unity in terms of stresses. Equilibrium considera-
tions reduce to the conservation of the shear flow due to the absence of
dσz/dz differential axial stress, as in the case of a closed profile under
torsion discussed below.

Figures 6 (a) and (b) show the shear stress contributions f;S1(s) and
f;S2(s) induced in the ideally opened (i.e. zero redundant shear flows
at the A,B points) multicellar profile by the first and the second shear
force components, respectively; due to the author distraction, such
figure refers to shear components aligned with the principal directions
of bending stiffness, and not to the usual x,y axes.

Figures 6 (c) and (d) show the shear stress contributions f;A(s) and
f;B(s) associated to unity values for the parametric shear flows at the
A, B segmentation points, respectively.

The cumulative shear stress distribution for the section in Figure 6

14
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is

τ(s) =
S1
A f;S1(s) +

S2
A f;S2(s) + τAf;A(s) + τBf;B(s) (30)

where s is a suitable arclength coordinate.
The associated elastic potential energy may then be integrated over

a ∆z beam axial portion, thus obtaining

∆U =

∫

s

τ2

2Gsz
t∆zds (31)

According to the Castigliano second theorem, the ∆U derivative
with respect to the τ̄i assumed shear stress value at the i-th segmenta-
tion point equates the generalized displacement with respect to which
the internal constraint reaction works, i.e. the t∆zδ̄i integral of the
relative longitudinal displacement between the cut surfaces; we hence
have

∂∆U

∂τ̄i
= δ̄it∆z (32)

The δ̄i symbol refers to the average value along the t∆z area of
such axial relative displacement.

Material continuity requires zero δ̄i value at each segmentation
point, thus defining a set of equations, one for each τ̄i unknown param-
eter, whose solution leads to the definition of the actual shear stress
distribution along the closed wall profile.
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