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Chapter 1

Spatial beam structures
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1.1 Axial load and uniform bending
It is preliminarily noted that the elementary extensional-flexural solu-
tion is exact with respect to the Theory of Elasticity if the following
conditions hold:

• beam constant section;

• beam rectilinear axis;

• absence of locally applied loads;

• absence of shear resultants1 (i.e. constant bending moments);

• principal material directions of orthotropy are uniform along the
section, and one of them is aligned with the beam axis;

• the 𝜈31 and the 𝜈32 Poisson’s ratios2 are constant along the sec-
tion, where 3 means the principal direction of orthotropy aligned
with the axis. Please note that 𝐸u�𝜈u�u� = 𝐸u�𝜈u�u�, and hence
𝜈u�u� ≠ 𝜈u�u� for a generally orthotropic material.

Most of the above conditions are in fact violated in many textbook
structural calculations, thus suggesting that the elementary beam the-
ory is robust enough to be adapted to practical applications, i.e. limited
error is expected if some laxity is used in circumscribing its scope3.

The extensional-flexural solution builds on the basis of the following
simplifying assumptions:

• the in-plane4 stress components 𝜎u�, 𝜎u�, 𝜏u�u� are null;

• the out-of-plane shear stresses 𝜏u�u�, 𝜏u�u� are also null;

1A locally pure shear solution may be in fact superposed; such solution may
however not be available for a general cross section.

2We recall that u�u�u� is the Poisson’s ratio that corresponds to a contraction in
direction u�, being a unitary extension applied in direction u� in a manner that the
elastic body is subject to a uniaxial stress state.

3Measures for both the error and the violation have to be supplied first in order
to quantify the approximation.

4Both the in-plane and the out-of-plane expressions for the characterization of
the stress/strain components refer to the cross sectional plane.
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• the axial elongation 𝜖u� linearly varies along the cross section,
namely

𝜖u� = 𝑎 + 𝑏𝑥 + 𝑐𝑦 (1.1)
or, equivalently5, each cross section is assumed to remain planar
in the deformed configuration.

The three general constants 𝑎, 𝑏 and 𝑐 possess a physical meaning;
in particular 𝑎 represents the axial elongation ̄𝜖 as measured at the
centroid6, 𝑐 represents the 1/𝜌u� curvature7 whereas 𝑏 represent the
1/𝜌u� curvature, apart from its sign.

Figure 1.1 (c) justifies the equality relation 𝑐 = 1/𝜌u�; the beam
axial fibers with a Δ𝑧 initial length are elongated by the curvature up
to a Δ𝜃 (𝜌u� + 𝑦) deformed length, where Δ𝜃𝜌u� equates Δ𝑧 based on
the length of the unextended fibre at the centroid. By evaluating the
axial strain value for a general fiber, it follows that 𝜖u� = 1/𝜌u� 𝑦.

In addition, Figure 1.1 (c) relates the 1/𝜌u� curvature to the dis-
placement component in the local 𝑦 direction, namely 𝑣, and to the
section rotation angle with respect to the local 𝑥 axis, namely 𝜃, thus
obtaining

𝑑𝜃
𝑑𝑧

= 1
𝜌u�

, 𝜃 = −𝑑𝑣
𝑑𝑧

, 𝑑2𝑣
𝑑𝑧2 = − 1

𝜌u�
(1.2)

Following analogous considerations, see 1.1 (e), we may similarly
obtain

𝑑𝜙
𝑑𝑧

= 1
𝜌u�

, 𝜙 = +𝑑𝑢
𝑑𝑧

, 𝑑2𝑢
𝑑𝑧2 = + 1

𝜌u�
(1.3)

where 𝜙 is the cross section rotation about the local 𝑦 axis, and 𝑢 is
the 𝑥 displacement component.

According to the assumptions in the preamble, a uniaxial stress
state is assumed, where the only nonzero 𝜎u� stress component may be
determined as

𝜎u� = 𝐸u�𝜖u� = 𝐸u� ( ̄𝜖 − 1
𝜌u�

𝑥 + 1
𝜌u�

𝑦) (1.4)

5The axial, out-of-plane displacement Δu� = ∫
Δu�

u�u�u�u� = Δu� (u� + u�u� + u�u�) ac-
cumulated between two contiguous cross sections with an Δu� initial distance, is
consistent with that of a relative rigid body motion.

6or, equivalently, the average elongation along the section, in an integral sense.
7namely the inverse of the beam curvature radii as observed with a line of sight

aligned with the u� axis. Curvature is assumed positive if the associated u� section
rotation grows with increasing u�, i.e. u�u�/u�u� > 0.
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Figure 1.1: A differential fibre elongation proportional to the 𝑦 coor-
dinate induces a curvature 1/𝜌u� on the normal plane with respect to
the 𝑥 axis. A differential fibre contraction proportional to the 𝑥 coor-
dinate induces a curvature 1/𝜌u� on the normal plane with respect to
the 𝑦 axis. The didascalic trapezoidal deformation modes (b) and (e)
clearly associate the differential elongation/contraction with the posi-
tive relative end rotation; they are however affected by a spurious shear
deformation as evidenced by the skewed corner.
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Figure 1.2: Positive 𝑥 and 𝑦 bending moment components adopt the
same direction of the associated local axes at the beam segment end
showing an outward-oriented arclength coordinate axis; at beam seg-
ment ends characterized by an inward-oriented local 𝑧 axis, the same
positive bending moment components are locally counter-oriented to
the respective axes.

Stress resultants may easily be evaluated based on Fig. 1.1 as

𝑁 = ∬
u�

𝐸u�𝜖u�𝑑𝐴 = 𝐸𝐴 ̄𝜖 (1.5)

ℳu� = ∬
u�

𝐸u�𝜖u�𝑦𝑑𝐴 = 𝐸𝐽u�u�
1

𝜌u�
− 𝐸𝐽u�u�

1
𝜌u�

(1.6)

ℳu� = − ∬
u�

𝐸u�𝜖u�𝑥𝑑𝐴 = −𝐸𝐽u�u�
1

𝜌u�
+ 𝐸𝐽u�u�

1
𝜌u�

(1.7)
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where the combined material/cross-section stiffness moduli

𝐸𝐴 = ∬
u�

𝐸u�(𝑥, 𝑦) 𝑑𝐴 (1.8)

𝐸𝐽u�u� = ∬
u�

𝐸u�(𝑥, 𝑦)𝑦𝑦 𝑑𝐴 (1.9)

𝐸𝐽u�u� = ∬
u�

𝐸u�(𝑥, 𝑦)𝑦𝑥 𝑑𝐴 (1.10)

𝐸𝐽u�u� = ∬
u�

𝐸u�(𝑥, 𝑦)𝑥𝑥 𝑑𝐴 (1.11)

may also be rationalized as the cross section area and moment of in-
ertia, respectively, multiplied by a suitably averaged Young modulus,
evaluated in the axial direction.

Those moduli simplify to their usual 𝐸u�𝐴, 𝐸u�𝐽∗∗ analogues, where
the influence of the material and of the geometry are separated if the
former is homogeneous along the beam cross section.

From Eqn. 1.5 we obtain

̄𝜖 = 𝑁
𝐸𝐴

. (1.12)

By concurrently solving Eqns. 1.6 and 1.7 with respect to the 1/𝜌u�
and 1/𝜌u� curvatures, we obtain

1
𝜌u�

=
ℳu�𝐸𝐽u�u� + ℳu�𝐸𝐽u�u�

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.13)

1
𝜌u�

=
ℳu�𝐸𝐽u�u� + ℳu�𝐸𝐽u�u�

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.14)

Axial strain and stress components may then be obtained for any
cross section point by substituting the above calculated generalized
strain components ̄𝜖, 1/𝜌u� and 1/𝜌u� holding for the extensional-flexural
beam into Eqn. 1.4, thus obtaining

𝜎u� = 𝐸u�𝜖u� (1.15)
= 𝛼ℳu� + 𝛽ℳu� + 𝛾𝑁 (1.16)
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where

𝛼 (𝑥, 𝑦, 𝐸u�, 𝐸𝐽 ∗∗) = 𝐸u�(𝑥, 𝑦)
−𝐸𝐽u�u�𝑥 + 𝐸𝐽u�u�𝑦

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.17)

𝛽 (𝑥, 𝑦, 𝐸u�, 𝐸𝐽 ∗∗) = 𝐸u�(𝑥, 𝑦)
−𝐸𝐽u�u�𝑥 + 𝐸𝐽u�u�𝑦

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.18)

𝛾 (𝑥, 𝑦, 𝐸u�, 𝐸𝐴) = 𝐸u�(𝑥, 𝑦) 1
𝐸𝐴

. (1.19)

The peak axial strain is obtained at points farther from neutral axis of
the stretched section; such neutral axis may be graphically defined as
follows:

• nonzero ̄𝜖 case: the neutral axis intersect the local axes at the
(𝑥, 𝑦) ≡ (0, − ̄𝜖𝜌u�) and ( ̄𝜖𝜌u�, 0) intercepts. A divergent intercept
with respect to one axis denotes parallelism;

• zero ̄𝜖 case: the neutral axis is centroidal and parametrically
defined by the 𝜆(1/𝜌u�, 1/𝜌u�) points, with arbitrary 𝜆.

In both cases, the direction that is normal to the neutral axis is para-
metrically defined as 𝜆(−1/𝜌u�, +1/𝜌u�). Elongation increases with grow-
ing 𝜆. The cross section projection on such a line defines a segment
whose ends are extremal with respect to the axial strain.

Equivalently, we may parametrically define the neutral axis as

(𝑥, 𝑦) ≡
⎛⎜⎜⎜⎜⎜
⎝

̄𝑒𝜌2
u�𝜌u�

𝜌2
u� + 𝜌2

u�⏟
u�u�

±𝑟
𝜌u�

√𝜌2
u� + 𝜌2

u�

, −
̄𝑒𝜌u�𝜌2

u�

𝜌2
u� + 𝜌2

u�⏟⏟⏟⏟⏟
u�u�

±𝑟 𝜌u�

√𝜌2
u� + 𝜌2

u�

⎞⎟⎟⎟⎟⎟
⎠

where (𝑥u� , 𝑦u�) the nearest pass-through point with respect to the 𝐺
centroid, and the 𝑟 parameter spans the axis as the distance from such
a point8.

8XXX
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1.2 Shear stresses due to the St. Venant tor-
sion

The classical solution for the rectilinear beam subject to uniform tor-
sion predicts a displacement field that is composed by the superposition
of a) a rigid, in-plane9 cross section rotation about the shear centre,
named twist, of uniform axial rate, and b) an out-of-plane warping
displacement that is uniform in the axial direction, whereas it varies
within the section; such warping displacement is zero in the case of ax-
isymmetric sections only (e.g. hollow or solid circular cross sections).

In-plane stress component 𝜎u�, 𝜎u�, 𝜏u�u� are assumed zero, along with
the normal stress 𝜎u�. The motion is internally restricted only due to
the nonzero out-of-plane shear stresses 𝜏u�u� and 𝜏u�u�, that develop as
an elastic reaction to the associated strain components.

A more in-depth treatise of the topic involves the solution of an
plane, inhomogeneous Laplace differential equation with essential con-
ditions imposed at the cross section boundary, which is beyond the
scope of the present contribution.

However, in the case of open- and closed- section, thin walled
beams, simplified solution are available based on the assumptions that
a) the out-of-plane shear stresses are locally aligned to the wall midsur-
face - i.e. 𝜏u�u� = 0 leaving 𝜏u�u� as the only nonzero stress component10,
and b) the residual 𝜏u�u� shear component is either constant by moving
through the wall thickness (closed section case), or it linearly varies
with the through-thickness coordinate 𝑟.

1.2.1 Solid section beam

TODO.

1.2.2 Closed section, thin walled beam

TODO.
9the rotation vector is actually normal to the cross sectional plane; the in-plane

motion characterization refers to the associated displacement field.
10Here, the notation introduced in paragraph XXX for the thin walled section is

employed.
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1.2.3 Open section, thin walled beam

For thin enough open sections of uniform and isotropic material we
have

𝐾u� ≈ 1
3

∫
u�

0
𝑡3(𝑠)𝑑𝑠 (1.20)

If the thin-walled cross section may be described as a sequence of con-
stant thickness wall segments, the simplified formula

𝐾u� ≈ 1
3

∑
u�

𝑙u�𝑡3
u� (1.21)

is obtained where 𝑡u� and 𝑙u� are respectively the length and the thickness
of each segment.

1.3 Stresses due to the shear cross section re-
sultants

In the presence of nonzero shear resultants, the bending moment ex-
hibits a linear variation with the axial coordinate 𝑧 in a straight beam.
Based on the beam segment equilibrium we have

𝑆u� = 𝑑ℳu�
𝑑𝑧

, 𝑆u� = −
𝑑ℳu�

𝑑𝑧
, (1.22)

as rationalized in Fig. XXX (a), with 𝑧 → 0 and differentiable ℳu�, ℳu�
with respect to 𝑧.

The linear variation of the bending moment in 𝑧 induces an equally
linear variation of the pointwise axial stress due to bending. In partic-
ular, the differentiation with respect to 𝑧 of Eqn.1.16 returns

𝑑𝜎u�
𝑑𝑧

= 𝛼 (𝑥, 𝑦, 𝐸u�, 𝐸𝐽 ∗∗) 𝑆u� − 𝛽 (𝑥, 𝑦, 𝐸u�, 𝐸𝐽 ∗∗) 𝑆u� (1.23)

since its 𝛼, 𝛽, 𝛾 factors are constant with respect to the bending mo-
ments11; the bending moment derivatives are here expressed as a func-
tion of the shear actions, as in Eqns. 1.22.

11The pointwise axial stress is a linear function of the two bending moments

9
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Figure 1.3: Equilibrium conditions with respect to the axial 𝑧 transla-
tion for the infinitesimal volume extracted from the beam. In the case
under scrutiny, the distributed volume action 𝑞u� is null.

Figure 1.3 rationalizes the axial equilibrium for an elementary vol-
ume of material; we have

𝑑𝜏u�u�
𝑑𝑥

+
𝑑𝜏u�u�

𝑑𝑦
+ 𝑑𝜎u�

𝑑𝑧
+ 𝑞u� = 0 (1.24)

where, for the specific case, the distributed volumetric load 𝑞u� is zero.
It clearly derives from such relation that the shear stresses 𝜏u�u�, 𝜏u�u� that
were null within the uniform bending framework are non-uniform along
the section, and hence nonzero, in the presence of shear resultants.

A treatise on the pointwise solution of a) Eqn. 1.24, once coupled
with b) the compatibility conditions and with c) the the material elastic
response is beyond the scope of the present contribution.

1.3.1 The Jourawsky approach and its extension for a
general section

The aforementioned axial equilibrium condition, whose solution is diffi-
cult for the infinitesimal volume, may be more conveniently dealt with
if a finite portion of the beam segment is taken into account, as in
Figure 1.3.1.

10
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Figure 1.4: Equilibrium conditions for the isolated beam segment por-
tion. It is noted that the null 𝜎u� variation locus, 𝑑𝜎u� = 0, does not
coincide with the bending neutral axis in general. Also, the depicted
linear variation of 𝑑𝜎u� with the 𝐷 distance from such null 𝑑𝜎u� locus
does not hold in the case of non-uniform 𝐸u� modulus.
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Figure 1.5: XXX.
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The beam cross section is partitioned based on a (possibly curve,
see Fig. 1.3.1) line that isolates an area portion 𝐴∗ for further scrutiny.
A beam segment is considered whose axial extent is 𝑑𝑧, and a portion of
such beam segment may be isolated accordingly; an axial equilibrium
equation may then be stated for the isolated portion as follows

̄𝜏u�u�𝑡 = ∫
u�∗

𝑑𝜎u�
𝑑𝑧

𝑑𝐴, (1.25)

where
̄𝜏u�u� = 1

𝑡
∫

u�
𝜏u�u�𝑑𝑟 (1.26)

is the average shear stress acting in the 𝑧 direction along the cutting
surface; 𝑖 is the (locally normal) inward direction with respect to such
a surface. Due to the reciprocal nature of the shear stresses, the same
̄𝜏u�u� shear stress acts along the cross sectional plane, and locally at the

cutting curve itself. Those shear actions are assumed positive if inward
directed with respect to 𝐴∗.

The ̄𝜏u�u�𝑡 is named shear flow, and may be evaluated along a generic
cutting curve.

It is noted that according to Eqn. 1.25 no information is provided
with regard to a) the 𝜏u�u� shear stress that acts parallel to the cutting
curve, nor b) the pointwise variation of 𝜏u�u� with respect of its average
value ̄𝜏u�u�. Those quantities may just be neglected without resorting to
more cumbersome calculation frameworks; an informed choice for the
cutting curve is thus critical for a reliable application of the method,
being optimal the adoption of the (normally unknown) iso- shear stress
lines of the exact solution.

In the simplified case of a) uniform material and b) local 𝑥, 𝑦 axes
that are principal axes of inertia (i.e. 𝐽u�u� = 0), the usual formula is
obtained

̄𝜏u�u�𝑡 = ∫
u�∗

(
𝑦𝑆u�

𝐽u�u�
+ 𝑥𝑆u�

𝐽u�u�
) 𝑑𝐴 = ̄𝑦∗𝐴∗

𝐽u�u�
𝑆u� + ̄𝑥∗𝐴∗

𝐽u�u�
𝑆u�, (1.27)

where ̄𝑦∗𝐴∗ and ̄𝑥∗𝐴∗ are the first order area moments of the 𝐴∗ section
portion with respect to the 𝑥 and 𝑦 axes respectively12.

12According to the employed notation, (ū�∗, ̄u�∗) are the center of gravity coordi-
nates for the u�∗ area.
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1.3.2 Shear stresses in an open section, thin walled beam

TODO.

1.3.3 Shear stresses in an closed section, thin walled
beam

TODO.

1.4 Castigliano’s second theorem and its appli-
cations

Castigliano’s second theorem may be employed for calculating deflec-
tions and rotations, and it states:

If the strain energy of an elastic structure can be expressed
as a function of generalised loads 𝑄u� (namely, forces or
moments) then the partial derivative of the strain energy
with respect to generalised forces supplies the generalised
displacement 𝑞u� (namely displacements and rotations with
respect to which the generalized forces work).

In equation form,
𝑞u� = 𝜕𝑈

𝜕𝑄u�
where 𝑈 is the strain energy.

1.5 Internal energy for the spatial straight beam
The linear density of the elastic potential (alternatively named internal)
energy for the spatial rectilinear beam may be derived as a function of
its cross section resultants, namely

𝑑𝑈
𝑑𝑙

=
𝐽u�u�𝑀2

u� + 𝐽u�u�𝑀2
u� + 2𝐽u�u�𝑀u�𝑀u�

2𝐸 (𝐽u�u�𝐽u�u� − 𝐽2
u�u�)

+ 𝑁2

2𝐸𝐴
(1.28)

+
𝜒u�𝑆2

u� + 𝜒u�𝑆2
u� + 𝜒u�u�𝑆u�𝑆u�

2𝐺𝐴
+ 𝑀2

u�
2𝐺𝐾u�

(1.29)

where

13
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Figure 1.6: A nonlinearly elastic (namely stiffening) structure; the
bending moment diagram is evaluated based on the beam portion
equilibrium in its deformed configuration. The complementary elas-
tic strain energy 𝑈 ∗ is plotted for a given applied load ̄𝑓 or assumed
displacement ̄𝛿, alongside the elastic strain energy 𝑈 .

• 𝐴, 𝐽u�u�, 𝐽u�u� and 𝐽u�u� are the section area and moments of inertia,
respectively;

• 𝐾u� is the section torsional stiffness (not generally equivalent to
its polar moment of inertia);

• 𝐸 and 𝐺 are the material Young Modulus and Shear Modulus,
respectively; the material is assumed homogeneous, isotropic and
linearly elastic.

The shear energy normalized coefficients 𝜒u�,𝜒u�,𝜒u�u� are specific to
the cross section geometry, and may be collected from the expression
of the actual shear strain energy due to concurrent action of the 𝑆u�, 𝑆u�
shear forces.

In cases of elastically nonlinear structures, the second Castigliano
theorem may still be employed, provided that the complementary elas-
tic strain energy 𝑈∗ is employed in place of the strain energy 𝑈 , see Fig.
1.5. The two energy terms are equal for linearly behaving structures.
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