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1 Introduction
There has been considerable effort of late directed toward the de-

velopment of improved plate and shell finite elements. Much of this
effort has been focused upon theories which include transverse shear
strain effects, for physical and computational reasons IZZ]. As a basis
for the development of "displacement" plate elements of this type,
the Mindlin theory [35] serves as the canonical starting point. Anal-
ogous, but generalized, theories may be used as the basis of shell ele-
ment formulations. The "degeneration concept" is the terminology
often applied to these ideas [1]. The literature on this topic, although
mostly recent, has already become extensive. The interested reader
may consult works among the following (incomplete) bibliography
to f amiliarize himself with developments in this area: [6, 8, 9, 14-16,
i9-25, 28, 29, 31, 37, 39-45, 49-52, 54, 561. Although general im-
provement in element behavior is being sought, particular emphasis
oi late has been placed on reliability (i.e., making elements "fool

prool'') and simplicity. This latter requirement is an essential one in
nonlinear analysis and especially in nonlinear transient analysis. Here,
cost is the overriding consideration, and simple, inexpensive elements
are actively sought after. Until fairiy recently, there really was no plate
or shell element which was sufficiently simple and inexpensive to be
considered viable for large-scale nonlinear transient problems.
Hciwever, the situation appears to be changing considerably as many
efforts in the direction of simplicity have been performed (for a
sampling of the literature on this topic, we may mention [3, 5, 7, B, 17,
23 26,  28,  29,31,  52,54]) .  Progress is  being made on manyfronts,  a l -
though a consensus favoring a particular approach is not yet in evi,
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concepts useful for the deuelopment of Mindlin plate elements are explored. Interpolato-
ry schemes and nodal patterns which are ideal according to the proposed criteria are
found to be somewhat more complicated. than desirable for practical applicatictns. Hout-
euer, these ideas are found to be useful as starting points in the deuelopment of simpler
elements. This is ilLustrated by the deriuation of a nen t'our-node bilinear quadrilateral
uthich achieues good accuracy uithout ostensible defect.

dence. Efforts of ours in this area have employed reduced and selective
integration techniques (see e.g., 122-261), a topic which has generated
considerable literature in recent years.

Unfortunately, efforts to develop effective simple elements (e.g.,
3-node triangles, 4-node quadrilaterals) often engender conceptual
complexity. To make simple functions and nodal patterns work well
seems to require the use of special procedures, or "tricks," depending
on one's viewpoint. These encumbrances are quite puzzling to the
nonspecialist and even create controversy among specialists.

One of the purposes of this paper, is to attempt to provide some
explanation why special techniques are necessary for the development
of simple, effective elements within the context of Mindlin plate
theory. Based upon an idea due to MacNeal [31], we propose criteria
for the development of Mindlin plate elements. Interpreted strictly,
not allowing for reduced/selective integration or allied procedures,
the interpolation schemes suggested involve different order polyno-
mials for displacement and rotation, and consequently different nodal
patterns. Thus it may be argued that "natural" elements, from the
standpoint of the performance criterion, are neither natural nor
convenient from implementat.ional and practical standpoints. It is
thus no wonder that elements of this type have apparently not been
investigated heretofore. The traditionally used alternative of equal-
order interpolation, if to be optimally effective, requires additional
embellishments. This is acknowledged by a weakened version of the
criterion, which accommodates the use of special techniques, such as
reduced/selective integration. This form is, in fact, the one used by
MacNeal  [31] .

These thoughts are, at first, somewhat disconcerting since they
seem to imply that elements which should work well, within the
standard Ritz-Galerkin framework, are not practically desirable.
However, it is felt that there are lessons to be learned from these el-
ements in that they may serve as conceptual starting points for ele-
ments which are simpler than their progenitors. We use this idea to
generate a new four-node quadrilateral which employs bilinear iso-
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parametric shape functions for all dependent variables. The element
possesses correct rank and thus cures the spurious zero-energy mode
problem which has beleaguered our previous endeavors on four-node
plates [22, 26]. The new element turns out to have some features in
common with MacNeai's QUAD4 [31], although it is felt that several
advantages are accrued in the present formulation. These are men-
tioned as follows:

The development of the element for the general quadrilateral

configuration is different from MacNeal's and appears to preclude

some of the complications alluded to in [31]. In particular, no special
local Cartesian system is necessary for effectuating good element
behavior, or lbr achieving an invariant formulation.

In nonlinear analysis, the entire strain and stress tensors need to
be calculated at each evaluation point. A shortcoming of what may

be described as the classical selective integration procedure is that

different components are calculated at different points, thus pre-

cluding straightforward generalization to nonlinear analysis. Recently,

a generalization of selective integration has been developed which

enables the pointwise definition of all strain, and consequently stress,

components U8, 231. The present element was developed within this
format and thus may be straightforwardly generalized to the nonlinear

case. This does not appear to be the case for QUAD4, in which a
complicated variant on the selective integration theme is em-
ployed.

We have avoided the use of any od hoc modification to attain spe-
cial behavior under certain circumstances. Robinson [45] has iriticized

QUAD4 on this point because of its tunable aspect ratio parameter

whose value is selected to give acceptable test results in certain single

element test cases. Although we are sympathetic of efforts to improve
high aspect ratio behavior, ad hoc techniques of this kind, based on
linear test cases, become suspect in generalizing to nonlinear analysis,
and even in linear cases, improvement in one situation may result in

deterioration in another. (An example of this phenomenon is pre-

sented in Section 5.6, "The Twisted Ribbon.") Presently, aspect ratio

deterioration is an ubiquitous, but poorly understood finite-element
phenomenon.

Another area in which we have opted for simplicity, compared with

QUAD4, is in the calculation of bending strains. MacNeal develops
a special selective integration procedure to accurately represent
certain cubic bending modes. (Herein we refer to these as "Kirchhoff

modes," see Section 2.) MacNeal goes on to show that full cubic be-
havior is unattainable, despite the introduction of a further compli-
cation, namely, modification of stiffness parameters via so-called
"residual bending flexibility." Since an order-of-accuracy improve-

ment is not achieved, it is felt that the additional complications are

unu'arranted. Admittedly, the price is not high in linear analysis;
however, in nonlinear analysis it is not at all clear what can even be
done along these lines. Consequently, standard procedures are em-
pl , 'yed herein to calculate bending stra ins.

An outline of the remainder of the paper is given as follows. In

Section 2, criteria for designing effective Mindlin plate elements are

discussed. A link between function approximation (i.e., order of ac-

curacy) and special techniques, such as reduced/selective integration,

is incorporated in the criteria. Element interpolatory schemes and
nodal pattterns, suggested by these ideas, are presented.

Using one of the elements as a conceptual starting point, the new
four-node bilinear quadrilateral plate is developed in Section 3. The

only nonstandard feature of the development is the way transverse
shear strains are interpolated, which is presented in detail in Section

3. In Section 4, implementational ideas are discussed. The special
treatment of transverse shear strains manifesls itself in the definition
of the weli-known "B-matrix" (i.e., strain-nodal displacement matrix)

of finite-element theory. The modification falls within the framework
presented in [18,  23] .  In Sect ion 4,  numerical  examples i l lustrate the
good overall behavior of the element. Since it is now well known that
plate/shell elements may behave well on one problem and patholog-

ically on another, an extensive set of problem results is presented. The
studies range from standard convergence tests to difficult problems,

incorporating singuiar behavior, which tend to manifest element
weaknesses. In addition, we consider a single-element test proposed
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by Robinson [a5] as a critical measure of the performance of a plate

bending element. Conclusions are presented in Section 6.
It is felt that some of the ideas presented herein significantly con-

tribute to the understanding of plate element design and behavior.
Many new element possibilities arise in the presentation which will
no doubt be the objecls of future studies. Furthermore, it is hoped that
analogous concepts will be useful in the study of relate<l problem areas,
such as continuum elements for incompressible, and nearly incom-
pressible, behavior (see, e.g., 14, 12, 18, 19, 32-34,36, 38, 48]).

The new four-node bilinear element developed herein is a decent
performer. The overall accuracy level of the element appears to be
good, without any ostensible defect, and this is accomplished while
retaining simplicity. Nevertheless, it is not claimed to be a panacea.
For example, its aspect ratio behavior on some problems is disap-
pointing. Perhaps further improvement may be made here. On bal-
ance, however, it appears as good as any four-node element we have
seen, perhaps better. It is a common practice for the developers of
elements to see only the virtues of their own work, and only the sins
of others, so we shall not belabor this point, leaving it for the reader
to decide what is most appropriate for hisl'her circumstances.

2 Criteria for Designing Effective Mindlin Plate
Elements

The first criterion which shed some iight on the design of Mindlin
plate elements was the method of constraint counting. This was em-
ployed in the investigations of Malkus and Hughes [34], Hughes,
Cohen, and Haroun [22], and several studies of Hinton, Zienkiewicz,
and colleagues (see, e.g., [42, 551). Although helpful in predicting the
performance of many plate elements, for some time it has been known
that an overly pessimistic assessment may be obtained in certain
situations. Recently, Spiiker and Munir [+9-St] have proposed a
modified constraint counting measure, called a "rotational constraint
index," which has achieved better correlation for the performance of
hybrid plate elements.

The criterion advocated herein is based upon the ideas originally
presented by MacNeal [Sf ] and employed by Parisch [391. Thin plate
behavior is governed by the classical Poisson-Kirchhoff theory. In this
limiting situation the face rotations become equal to the slopes of the
transverse displacement field. Analytically, the rotations are no longer
independent kinematic variables, but become the derivatives of the
transverse displacement field. To assess the ability of Mindlin-type
plate elements to correctly handle limiting thin.plate behavior, we
shall examine the Mindlin elements with respect to the modes of
deformation emanating from the classicai theory.

To be more precise, let us define a Kirchhot'f mode by the rela-
t ion

H,,  = w*,  (1)

where ar is a given transverse displacement; d" is the r..-rotation, a
= 1, 2; and a comma is used to denote partial diff'erentiation (e.g., u.,.
= dut /dr ,^1.

A Kirchhoff mode of order m will be one in which lr is taken to be
a complete mth-order polynomial ,  P-(r1,  r2) .  An example of  a com-
plete polynomial is the quadratic polynomial

PzOt , x )  =  C1  *  C2 r1  *  C3 r2  *  Cax12  *  C5x7x2*  C6x22  (2 )

where the C'-c are arbitrary coefficients.
Criterion 1. As a measure of the effectiveness of an eiement, we

shall ask what order Kirchhoff mode the element is able to exactlv
interpolate. The higher the order, the greater the abilitv of the element
to perfirrm accurately in the thin-plate limit^

Criterion 2. A weakened version of the foregoing criterion, which
accommodates reduced/selective integration and other procedures,
asks for what order Kirchhoff mode is the strain energy calculated
exactly. This is the form of the criterion employed bv MacNeal [31]
and Parisch [39]. Note that Crit.erion 1 implies Criterion 2.

Posing the criteria in terms of complete polynomials links up with
order-of-accuracy concepts and may be useful in mathematical error
analvsis.
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Fig. 1 Beam elemenls de.ived trom the Kirchhofl-mode criterion

Criterion t has the advantage that it suggests element interpolation
schemes which may be effective. In this regard, it is immediately ap-
parent that, according to Criterion 1, ideal interpolations may be
devised by assuming ru to be a polynomial one order higher than that
assumed for the d"'s. Before considering some detailed examples of
this type, it is worth remarking that schemes like this have apparently
not been tried before and would be somewhat inconvenient from an
implenentational standpoint.

As a starting point, let us consider some one-dimensional beam-type
examples. The lowest order possibility is quadratic displacement and
linear rotation. (Note that linear displacement, constant rotation, is
inadmissible since the rotation would necessarily be discontinuous,
in violation of the continuity requirements of the governing theory.)
The nodal pattern is illustrated in Fig. 1. This element achieves
quadratic accuracy according to Criterion 1. The center displacement
degree of freedom is inconvenient, however. An element of equivalent

accuracy, in the sense of Criterion 2, which exclusively uses linear
interpolations, may be devised by employing the reduced integration
concept (one-point Gaussian quadrature need be used). This element
was introduced in [26] and has led t.o the simplest effective two,
dimensional shell formulations It4, 2+, 25,541.ln the linear constant
coefficient case it can be shown to be identical to the quadratic dis-
placement, linear rotation beam. (The center displacement degree
of freedom may be statically condensed to yield an identical stiffness
matrix [2].) Here we have a primitive illustration of the success of the
reduced/selective integration concept, in that an element possessing

a convenient interpolatory scheme may be made to behave like one
possessing a higher-order, inconvenient scheme.

The next beam example consists of cubic interpolation for dis-
placement and quadratic interpolation for rotation. The nodal pattern

is i l lustrated in Fig.  1.  Again,  the internal  degrees of  f ' reedom are in-
convenient in practice. Static condensation leads to the usual element
st i f fness of  st ructural  theory (see,  e.g. ,  [10,  p.  333]) .  An equivalent
element may be obtained with quadratic interpolations for both ur
and fl, in conjunction with reduced two-point Gaussian quadrature.

Again, static condensation of the internal degrees of freedorn leads
to the usual stiffness of structural theor-v [2]. Higher-order examples
of this type may be constructed similarly.

Analogous two-dimensional interpolatory schemes may be devised
for triangles. The triangular family illustrated in F'ig. 2 appears unique
among two-dimensional element families in that the functions which
constitute the rotational interpolations are obtained exactly from the
derivatives of displacement-no more, no less. T'his is unlike the
situation for a somewhat analogous famil-v of quadrilaterals in which
Lagrange interpolations are used, the displacement being one order
higher than the rotation (see Fig. 3).1 For this family of elements, the

I In consideration of quadrilateral elements, for purposes of discussing
Kirchhoff modal behavior, we shall assume a rectangular geomerry.
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Triangular plate elements derived from lhe Kirchhoff-mode crite.
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Fig. 3 Quadrilaleral Lagrange plate elements derived from the Kirchhotf-
mode crilerion

derivative of displacement contains more monomials than does the
rotational interpolations. The classical l,agrange family of quadri-
lateral plate elements, in which identical interpolations are used for
displacement and rotations (see l'ig.4). creates the opposil,e situation
in that  the rotat ional  interpolat ion contains more monomials than
does the derivative of displacement. That this situation is harmful
has been suggested by Spilker and Munir [501" Further research is
required to determine the nature and extent of the problern when
displacement and rotation fields lail to "match" according to t,he
criteria. In any event, the triangular familv of Fig. 2 appears canonical
in th is sense.

Of cxrurse, classical Lagrange-type interpolations, in which idenl,ical
nodal patterns are employed for displacernent and rotation (e.g., Fig.
.1) ,  are more easi ly  implemented and appl ied than the new schemes
suggested by the Kirchhoff  modal  cr i ter ia ( i .e. ,  F igs.  2 and l ] ) .  The
behavior of l,agrangian elements has been shown to improve through
use of the reducedr'selective integration technique (unfbrl,unately,
so far at the expense of rank deficienc-yl 122,421. The excess rotat.ional
monomials are " f i l tered" by the lower-order quadrature resrr l t ing in
higher-order behavior  in the sense of  Cr i ter ion 2.  Thrrs rve sce again
that convenient interpolations necessarily entail special procedures,
such as reduced/select ive integrat ion and al l ied techniques,  i l  thev
are to achieve opt imal  accuract ' in  pract ice.  I t  has been argued that
i f  h igh enough order interpolat ion (e.g. ,  b icubic level)  is  used there
is no need to employ reduced quadrature as adequate accrrra( :v is

Fig. 2
rion
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Fig. 4 Classical Lagrange plate elemenls

achieved. The fact remains, however, that the behavior of such ele-

ments with full quadrature is suboptimal and may be further im-

proved by the use of appropriate reduced/selective integration

techniques.
In passing, we may note that the behavior of serendipity interpo-

latory schemes [513] is similar to Lagrange schemes with respect to

Kirchhoff modal behavior. Specifically, classical schemes, in which

the same interpolations are used for displacement and rotation, result

in excess rotational monomials, whereas schemes in which displace-

ment is interpolated one order higher than rotation possess excess

monomials in the displacement-derivative field.

It is interesting to note that bv using different interpolations fbr

displacement and rotation, the possibility arises of devising
"matched" interpolations for quadrilaterals. As an example of this

phenomenon we may mention the combination of nine-node biqua-

dratic Lagrange interpolation for displacement with eight-node ser-

endipity interpolation for rotation. (This scheme has in fact been used

as the starting point for the development of a discrete-Kirchhoff el-

ement by I rons [27] . )
In summary, the ideal interpolations, with respect to the proposed

criteria, are not the most desirable from the practical standpoint. In

the sequel we shall attempt to use the idea of "optimal interpolation"
(roughly speaking, one order higher for displacement than rotati<-rn)

as a basis for the design of a practically appealing four-node quadri-

lateral element which simultaneously achieves simplicity and accuracy

without engendering rank deficiency.

3 The Four-Node Bilinear fsoparametric Element
' l 'he present version of the fbur-node bilinear isoparametric element

is based upon the concepts described in the previous section. The

conceptual starting point is the straight-edged quadrilateral element

in which transverse displacement is interpolated via nine-node

Lagrange shape functions and rotations are interpolated via four-node

biiinear shape functions (see Fig. 3). This element achieves quadratic

accuracy with respect to Kirchhoff modes. The idea is to calculate the

transverse shear strains in a special way independent of the midside

and center node displacement degrees of freedom. In this way, the

element stiffness senses only the corner node transverse displacement

degrees of freedom and, consequently, four-node bilinear shape

functions may be used in place of the nine-node Lagrange shape

functions in formulating the element arrays. Examination of the in-

terpolations reveals that the midpoints of the sides are locations at

which the transverse shear strain components parallel to the sides are

independent of the afbrementioned nodal values. These four scalar

values will be used to define the transverse shear strains. The details

of the procedure follow.

Definition of Element Transverse Shear Strains. Geometric

and kinematic data is defined in Fig. 5. Note that the direction vectors

have unit length (e.g., | "rr I = 1, etc.). Let aro and do denote the

transverse displacement and rotation vector, respectively, associated

with node o. Throughout, a subscript b will equal o * 1 modulo 4'

That is
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and kinemalic data lor lhe four-node quadrilaleral ele-
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Fig. 6 Definilion of nodal lransverse shear strain veclor

The definition of the element shear strains may be facilitated by the

following steps:

1 For each element side define a shear strain component, located

at the midpoint, in a direction parallel to the side, viz.,

go = (ut t  -  tL," ) lho -  eor .  (01 + 0") /2.  (4)

2 For each node, define a shear strain vector (see Fig. 6 for a

geometric interpretation of this process):

" lb = ^Ybgbt *  Tazen (5)

1n=  (7  -  ao2 ) -1 (8 t z  -  EaPu )  ( 6 )

-yar = (1 -  r r l2)-1(gl r  -gt ,zcr l )  (7)

.vb = eb1 .  eb2 (8)

8b1 = tsb (9)

gb2=  _8 "  ( 10 )

li interpolate the nodal values by way of the bilinear shape

functions (No 's).

( 3 )

1 =  L N " " Y "
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Remarks:

1 Ifthe nodal transverse displacements and rotations are specified
to consistently interpolate a constant transverse shear strain field,
sayi, then the preceding steps will result in 1 = t. That is, constant
transverse shear deformation modes are exactly representable in the
general quadrilateral geometry.

2 In the rectangular configuration, the shear strains take on the
following form (we assume the origin of coordinates coincides with
the element center):

,y{rz,  x)  = ur , r (0,0)  -  01(0,  0)  *  r2 lw;2 -  0r ,2(0,0) ]  (12)

7z(xr ,  x)  = w ,z(0,0)  
-  dz(0,  0)  I  x l lw.21- d2,1(0,  0) ]  (13)

where u,12 = w,2r = constant. In this case the linear variations of 71
with 12 and 72 with rt may be clearly seen. Note that there are four
scalar transverse shear strain modes. (This may be concluded in
general from the foregoing steps 1-3 which amount to an interpolation
of the four scalar parameters gt gz, Es, and ga.) These modes include
the two constant transverse shear modes, and the ,,hourglass" 

and
"in-plane 

twist" modes (see [22] for a discussion), thus enabling the
element to achieve correct rank. In the rectangular configuration, the
transverse shear strain variation is equivalent to the selective inte-
gration scheme of MacNeal [31]. The generalizations to quadrilateral
configurations differ somewhat.

3 The "constraint index" (as defined in [34] ) for the present ele-
ment is -1, which suggests failure in the thin-plate limit. As will be
seen from the numerical examples, this is not the case, an illustration
that the constraint index is sometimes overly pessimistic for
plates.

4 To assess the effectiveness of the present element we employ
the ideas of Section 2. Consider the rectangular configuration. It can
be shown, with the aid of ( 1 2) and ( 13), that quadratic accuracy with
respect to Kirchhoff modes is attained. This could be anticipated from
the wal the transverse shear strains were interpolated. The re-
duced/selective integration elements presented in [22, 26] effectively
achieve the same end. However, they do not retain correct rank as does
the present e lement.

5 Analogous procedures may be used to derive a three-node
triangle employing linear shape functions. The conceptual starting
point, in this case, is the triangle with quadratic u and linear d.'s (see
Fig. 2). Again, quadratic accuracy with respect to Kirchhoff modes
is achieved in the sense of Criterion 2. If effective in practice, this el-
ement would represent one of the simplest effective elements ever
devised for bending applications.

4 Implementation

In this section we consider the irnplementation of Mindlin plate
elements in which the same interpolatory patterns are used for dis-
placement and rotations. This is general enough to encompass our new
four-node element. It suffices in the present circumstances to consider
the simpler case of a homogeneous, isotropic, linearly elastic plate of
constant thickness t.

Let A" and .se denote the area and boundary, respectively, of a
typical element. Let N1, Nz, . . ., N. denote shape functions, where
n is the number of element nodes.

The eLement stiffness matrix, ke, may be defined as follows:

k e = k b e * k s e

xu" = 
fo"abrobabdA 

bending st i f fness ( lS)

k " "  = Bs' DsBsd/ shear stiffness (16)

The definition of Bo " is the essential ingredient in the development
of an effective element. In the "normal" case, 6o" = B"s,which is de-
fined by

lN . ,  -N -  0  1
B o ' = l  

" '  
- . 1  l < a < n .  ( 2 0 )"  

[N".2 0 -N, l

With this definition, some form of reduced/selective integration
usually needs to be employed for success in the thin plate limit.

In the present formulation the reduced/selective-integration effect
is accounted for directly in the definition of %" [18, 23]. For the
transverse shear strain interpolations derived in the previous section,
6o " takes on the following form [recall the relation beiween subscripts
o and b,  see (3) ] :

e r "  =  [ e61 "e62 "a63 " ]  |  <b  <  4

B - O r , = h o - 1 G o  - L A - L G O

E62"= (e62Lco -eb l c , J / z

E f i ' = (e r z2Go-eb f c ) / 2

G. = (1 - o.o2)-1No(eot - aoeaz) - (1 - a6 z)-t1ga (eaz - rrl ear )

(25)

", = 
{;;;l}, "- (26)

The matrices Db and D", for the isotropic, linearly elastrc, constant
thickness case, take on the following forms (respectively):

and

8 6 = [ B 1 a g r b . . . B . 6 ]

g "  =  [ [ 1 " 8 2 " . . .  g " " ]

(17)

(18)

3 a  3 n .  ( 1 9 )""'=[l ;, t'j I

(27)Db=!:[;:: '"i' 
l]

(21)

(22\

(23)

(r l \

(28)

(2e)

(30)

o" - ̂ ,u [; :l
where tr = Drp/Qt + 2p), X and p are the Lam6 parameters, and x is
a "shear correction factor," which is taken to be f; throughout.

"fhe external load uector, le, is given by

t" = lfr"l

l-f^"*"'oo 
*

l- t.*"""
J " " ^ " , & Q d " ,  

I  = 3 a - 2 ,  I  < o  < n

-  
f "  N o M * d s ,  I = J a * a - 2 ,  r < a < n ,  a = r , 2

r , f  se  ns2

(14)

where F is the total applied transverse force per unit area, C* is the
total applied couple per unit area, Q is the applied shear force, M. is
the applied boundary moment, and s2 is the portion of the plate
boundary upon which forces and moments are prescribed.

The element stress resultants may be obtained from the following
relations:

-  Pbg66e bending moments (31){n}!^"
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+  d e n o l e s  l o c o i r o n  o l  G o u s s  p o r n l  (  1 -  p o i n i  r u l e )  n e o r e s l  c e n i e r

Square plale meshes; due lo symmelry, only one quadranl ls dlscre-

= osBsde shear resul tants

(33)

(34)

(35)

where

d t "  =

0 d =

element displacement vector

3 a - 2 ,  l < a < n

S a I a - 2 ,  l < a < n ,  a = I , 2

Remark. Generalization of the formulation to fully nonlinear

analysis is straightforward by way of the procedures described in [18.
231.

5 Numerical Examples
All calculations were performed at the California Institute of

Technology Computer Center on an IBM 3032 computer in double

precision (64 bits per floating point word). Unless otherwise specified,

a Poisson's ratio of 0.3, Young's modulus of 10.92 X 105, and geometric

parameters L : 10 and t = 0.1 were used throughout.

In the context of Mindlin theory, two interpretations of the classical

simply supported boundary condition are possible: SS1, in which only

the transverse displacement is set to zero; and SSz, in which the

transverse displacement and tangential rc-rtation are set to zero. In

applications to thin plates, SS1 is generally preferable since it leads

to convergent results when polygonal approximations of curved

boundaries are employed. Nevertheless SS2 corresponds to the simply

supported condition of classical thin plate theory and may be safely

ernployed for the analysis of polygonal, and in particular rectanguiar,

plates. See [22] for a discussion of the treatment of simply supported

boundary conditions and references to pertinent literature.

The following codes are used to denote the elements compared:

St --'rhis elentent employs 2 x 2 Gauss quadrature on the bending

sti{fness and one-point Gauss quadrature on the shear stiffness
("selective reduced integration"). It was originally proposed in [26]
and has subsequently been studied extensively in [22] among other

places. It possesses two spurious zero-energy modes [22, 26].

T1 
'Ihis is the element developed herein; 2 X 2 Gauss quadrature

it used on all terms. It possesses correct rank.

Ul 
'Ihis element employs one-point Gauss quadrature on all

terms ("uniform reduced integration"). It was first proposed in [22]
and studied therein. It possesses four spurious zero-energy modes.

In one case, the "twisted ribbon," we compare results with an ele-

ment proposed by Robinson [a5], dubbed LORA, and the MSC/

NASTRAN element Qt lAD4 [31] .
Despite the defects of 51 and Ul (i.e., spurious zero-energy modes)

they behave well in many situations and are of interest because of their

economy. With appropriate stabilization measures, such as so-called
"hourglass" stifTness and viscosities, they hold significant potential

in nonlinear analysis. See [11, 13, 130] for discussions of stabilization

ideas employed in the continuum case.

In cases in which the dimensions enable the plate to be considered
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Fig. 9 Circular plate meshes; due lo symmelry, only one quadrant is
discretized

"thin," comparison is made with results of classical Poisson-Kirchhoff

theory.
5.1 Thin Square Plate. This set of problems is perhaps the most

common employed in testing plate element behavior. Meshes are

depicted in Fig. ? and results in Fig. 8. As may be seen, results for el-

ements Sl and T1 are identical for plotting purposes' All elements

perform weli for this case.

5.2 Thin Circular Plate. These problems test the behavior of

the elements in nonrectangular configurations. The radius /i = 5.0.

l'he meshes are shown in Fig. 9 and convergence results presented in

Fig. 10. In this case,'I1 is generally the best perlirrmer, although all

elements perform well.

5.3 Thin Rectangular Plates. These problems test the response

of the element to changes in planar aspect ratio. The meshes are

shown in Figs.  1 l  and 12 and resul ts are prsented in Figs.  113 and 14.

In these cases, as in the case of the square plate study. the dilTerences

between S1 and T1 are indiscernib ie on the scale of the plots.

As may be seen f'rom Figs. 13 and 14, by far the worst displacement

results are obtained for the clamped-boundary, concentrated-load

8 5
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case. (This same pattern is in evidence for the square plate, see Fig.
8.) Robinson [45] has selected this case to compare 51 with an element
he proposes, and some others, on crude meshes. Furthermore, some
of the data he present-. for 31 shows the error to be approximately
twice the actual amount. Nevertheless it must tle admitted that there
is deterioration of accuracy with planar aspect ratio, a common, but
not well-understood phenomenon for virtually all finite elements.

5.4 Thin Rhombic Plate. The configuration and mesh are
shown in Fig. 15. The length parameter ru = 100. The plate is uni-
formly loaded and simply supported boundary conditions (SSr) are
employed. This problem is a difficult one since there is a singularity
at the obtuse vertex. The analytical solution reveals that the r r and
r 2 bending moments have opposite signs in the vicinity of the obtuse
vertex. Many thin plate elements yield pathological results for this

Journal of Applied Mechanics
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Fig. 13 Convergence sludy tor lhln reclangular plale {aspect ratlo = 2}

problem in that moments with the same sign are obtained (see [a6,
47] for a discussion). Moment results are presented in Fig. 16. The
general trend for each element is correct. However, the elements have
a tendency to oscillate somewhat as may be seen. The worst oscilla-
tions are produced by Ul. Considering that the mesh is not biased to
favor the singularity, and that the problem is a numerically difficult
one, the accuracy of the results obtained for S1 and U1 is considered
to be fairly good.

5.5 Thick Circular Plate" This problem employs the same

Y-L/2--1

N " t  ' 4 N " r  .  l 6

N c r  = 4
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48-element mesh as shown in Fig. 9, except the thickness is taken to

be 2.0, and thus the plate may be considered "thick" (R/t = 2.5).lt

has been our experience that increasing thickness creates problems

for rank-deficient elements [26]. An analltical solution obtained from

Reissner's theory is used as a basis of comparison. The behavior under

the load is singular and this gives rise to almost identical oscillatory

patterns for elements S1 and Ul as may be seen in Fig. 17. On the

other hand, element Tl produces very accurate results for this

case.
5.6 Twisted Ribbon. Configurations, data and results for this

problem are shown in Fig. 18. In each analysis, only one elernent is

employed. Robinson [45] has proposed this as a critical single element

test for plate bending elements. Comparisons are made with data

presented in [45] for Robinson's element, LORA, and MacNeal's

QUAD4 [31].
For Cases A and C (fully fixed boundary), comparison is made with

respect to a benchmark analysis, reported upon in [45], involving
sixteen high-precision elements. As may be seen, the results for our
new element T1 are superior to the results for both LORA and

QUAD4. Furthermore, no deterioration with increasing aspect ratio
is detected. For this case, elements Sl and U1 exhibit pathological

behavior due to rank deficiency (not shown).
It is interesting to note that Robinson [45], in advocating the use

of LORA, has particularly emphasized its good behavior with respect
to aspect ratio. Clearly, however, there is significant and inexplicable
deterioration of LORA in Case B. Special emphasis has also been
given to aspect ratio behavior by MacNeal [31] in the development
of QUAD4. The technique employed is ad hoc and employs an ad-
justable parameter. Although improvement is noted in some situa-
tions, deterioration is encountered in others, as may be concluded
from the cornparison of T1 and QUAD4 in this example.
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If only half the domain is modeled, and antisymmetrical boundary

conditions are enforced (Cases C and D), the exact solution is one of

pure twist. For these cases, S1 and T1 yield exact solutions, whereas

U1 still behaves pathologically (not shown).

6 Conclusions
In this paper a new conceptual framework has been established for
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ward generalization to nonlinear analysis, and appears to have some

advantages over competing elements.

Considerable further work remains to be done in exploring the

behavior of some of the new elements proposed herein. In addition,

serious studies of aspect ratio effects and transverse shear resultants

would be very helpful in improving the understanding of element

response. Finally, the rigorous mathematicai convergence analysis

of elements of the type considered in this work, which is a delicate

matter judging from related studies [38, 48], needs to be assiduously

pursued to put matters on a sound footing.
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