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0.1 Mass matrix for the finite element

0.1.1 Energy consistent formulation for the mass matrix

The Ω volume of material associated to a finite element is consid-
ered, along with the local, physical reference system (x, y, z), and its
isoparametric counterpart that, for the quadrilateral plate element un-
der scrutiny, is embodied by the (ξ, η, z) triad.

The vector shape function array

S (ξ, η, z) =

. . . ũi(ξ, η, z) . . .
. . . ṽi(ξ, η, z) . . .
. . . w̃i(ξ, η, z) . . .

 (1)

is defined based on the elementary motions ũ i ≡ [ũi, ṽi, w̃i]
> induced

to the element material points by imposing a unit value to the i-th
degree of freedom di, while keeping the others fixed.

The displacement field is then defined as a linear combination of
the elementary motions above, where the d element Degree of Freedom
(DOF)s serve as coefficients, namely

u (ξ, η, z) = S (ξ, η, z) d . (2)

Deriving with respect to time the equation above, the velocity field

u̇ (ξ, η, z) = S (ξ, η, z) ḋ (3)

is obtained as a function of the first variation in time of element DOFs.
Expression 3 is simplified by the constant-in-time nature of S .

The kinetic energy contribution associated to the deformable ele-
ment material points may be integrated, thus obtaining

Ekin =
1

2

∫∫∫
Ω

u̇ > u̇ ρdΩ (4)

where ρ is the material mass density, that may vary across the domain.
By substituting the velocity field definition of Eq. 3 we obtain

Ekin =
1

2

∫∫∫
Ω

[
S ḋ

]> [
S ḋ

]
ρdΩ, (5)
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and finally

Ekin =
1

2
ḋ >
[∫∫∫

Ω
S > S ρdΩ

]
ḋ =

1

2
ḋ > M ḋ . (6)

The integral term that defines the M mass matrix is evaluated by
resorting to the same quadrature technique introduced for its stiffness
counterpart.

The actual nature of the mass matrix terms varies based on the
type of the DOFs that are associated to the term row and column; in
particular, the diagonal terms that are related to displacements and
rotations are dimensionally consistent with a mass and a moment of
inertia, respectively.

The mass matrix quantifies the inertial response of the finite ele-
ment; according to its definition

M =

∫∫∫
Ω

S > S ρdΩ, (7)

it is merely a function of the material density, and of the kinematic laws
that constrain the motion of the material particles within the element.

If a set of external (generalized) forces F is applied to the element
DOFs in the fictitious absence of elastic reactions, a purely inertial
response is expected. The ḋ vector defines the instantaneous first
derivative in time of the DOFs (i.e. nodal translational and rotational
velocities); the instantaneous power supplied by the external forces is
then evaluated as ḋ > F , that induces an equal time derivative of the
kinetic energy, quantified as 1

ḋ > F =
dEkin

dt
=
d

dt

(
1

2
ḋ > M ḋ

)
=

1

2

(
d̈ > M ḋ + ḋ > M d̈

)
= ḋ > M d̈ .

1The symmetric matrix characterizing property

x> A y = y> A x ∀ x , y ∈ Rn

is used in deriving the last passage.
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Due to the general nature of ḋ , equality

F = M d̈ (8)

is implied, which points out the mass matrix role in transforming the
DOF vector second derivative in time (i.e. nodal translational and
rotational accelerations) into the generalized force components that
are to be applied in order to sustain such variation of motion.

0.1.2 Lumped mass matrix formulation

In a few applications, a diagonal form for the mass matrix is preferred
at the expense of a) a strict adherence to energy consistency, and b)
some arbitrariness in its definition.

The finite element volume is ideally partitioned into a set of influ-
ence domains, one each node. In the case of the four-noded quadrilat-
eral, material points whose ξ, η isoparametric coordinates fall within
the first, second, third and fourth quadrant are associated to nodes n3,
n4, n1 and n2, respectively; those distributed masses are then ideally
accumulated at the associated node.

A group of four concentrated nodal masses is thus defined, whose
motion is defined based on single translational DOFs, and not on the
plurality of weighted contributions that induces the nonzero, nondiag-
onal terms at the consistent mass matrix.

This undue material accumulation at the element periphery pro-
duces a spurious increase of the moment of inertia, condition, this, that
may only be worsened if (positive) rotational inertias are introduced
at nodes.

Those nodal rotational inertias are however required in associating
a bounded angular acceleration to unbalanced nodal torques; solution
methods based on the mass matrix inversion, e.g. explicit dynamic
procedures, are precluded otherwise. Since there is no consensus on
the quantification those inertial terms, the reader is addressed to spe-
cialized literature.

0.2 External forces

Energetically consistent external actions may be applied at the nodal
DOFs, that may be interpreted as concentrated forces and moments;
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their physical rationalization outside the discretized structure frame-
work – and in particular back to the underlying elastic continua theory
– is far from being trivial.

Surface tractions and volumetric loads are instead naturally tied
with the continuum formulation, and are usually employed in formal-
izing the load condition of structural components.

The present paragraph derives the equivalent nodal representation
of distributed actions acting on the domain of a single finite element;
the inverse relation provides a finite, distributed traction counterpart
to concentrated actions applied at the nodes of a discretized FE model.

The S set of elementary deformation modes that is introduced
in the context of the element mass matrix derivation, see Eqn. 1,
is employed to define a virtual displacement field within the element
domain based on the virtual variation δ d of its nodal DOFs values,
i.e.

δ u (ξ, η, z) = S (ξ, η, z)δ d , (9)

see also Eq. 2.
A volumetric external load is considered, whose components q =

[qx, qy, qz] are consistent with the S matrix reference system, i.e. the
local to the element, physical Cxyz one. If external load components
are defined in the context of a global reference system, straightforward
reference frame transformations are to be applied.

The virtual work performed by those distributed actions is first
integrated along the element domain, and then equalled to its nodal
counterpart δ d > F , thus leading to

δ d > F =

∫∫∫
Ω

(δ u )> q dΩ

=

∫∫∫
Ω

(
S δ d

)>
q dΩ

= δ d >
∫∫∫

Ω
S > q dΩ,

and finally to

F =

∫∫∫
Ω

S > q dΩ (10)

due to the general nature of δ d .
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The quadrature along the domain is performed according to the
methods introduced for deriving the element stiffness matrix. If a sur-
face or an edge load are supplied in place of the volumetric load vector
q , equation 10 integral may be adapted to span each loaded element
face, or edge.

In the case of low order isoparametric elements – e.g. the four-
noded quadrilateral shell element, an alternative, simplified procedure
for the consolidation of the distributed loads into nodal forces becomes
viable. According to such procedure, the element domain is partitioned
into influence volumes, one each node; the external load contributions
are then accumulated within each partition, and the resultant force
vector is applied to the associated node.

By moving such resultant force from the distribution Center of
Gravity (COG) to the corner node, momentum balance is naively dis-
regarded; the induced error however decreases with the load field vari-
ance across the element, and hence with the element size. Such error
vanishes for uniform distributed loads.

In the presence of a better established, work consistent counterpart,
such simplified procedure is mostly employed to set a rule-of-thumb
equivalence between distributed and nodal loads; in particular, the
stress-singular nature of a set of nodal loads may be easily pointed out
if it is observed that a finite load resultant is applied to influence areas
that cumulatively vanish with vanishing element size.
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