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0.1 Joining elements into structures.

0.1.1 Displacement and rotation field continuity

Displacement and rotation fields are continuous at the isoparametric
quadrilateral inter-element interfaces; they are in fact continuous at
nodes since the associated nodal Degree of Freedom (DOF)s are shared
by adjacent elements, and the field interpolations that occur within
each quadrilateral domain a) they both reduce to the same linear rela-
tion along the shared edge, and b) they are performed in the absence
of any contributions related to unshared nodes.

0.1.2 Expressing the element stiffness matrix in terms
of global DOFs

As seen in Par. ??, the stiffness matrix of each j-th element defines
the elastic relation between the associated generalized forces and dis-
placements, i.e.

F ej = K ej d ej (1)

where the DOFs definition is local with respect to the element under
scrutiny.

In order to investigate the mutual interaction between elements in
a structure, a common set of global DOFs is required; in particular,
generalized displacement DOFs are defined at each l-th global node,
i.e., for nodes interacting with the shell element formulation under
scrutiny,

d gl =



ugl
vgl
wgl

θgl
ϕgl

ψgl

 . (2)

The global reference system OXY Z is typically employed in project-
ing nodal vector components. However, each l-th global node may
be supplied with a specific reference system, whose unit vectors are
ı̂gl, ̂gl, k̂gl, thus permitting the employment of non uniformly aligned
(e.g. cylindrical) global reference systems.
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Those nodal degrees of freedom may be collected in a global DOFs
vector

d>g =
[

d>g1 d>g2 . . . d>gl . . . d>gn
]

(3)

that parametrically defines any deformed configuration of the structure.
Analogously, a global, external (generalized1) forces vector may be

defined, that assumes the form

F>g =
[

F>g1 F>g2 . . . F>gl . . . F>gn
]

; (4)

since external constraints are expected to be applied to the structure
DOFs, the following vector of reaction forces

R>g =
[

R>g1 R>g2 . . . R>gl . . . R>gn
]

(5)

is introduced, along with the reaction force vector of the internal kine-
matic constraints, named tying forces

T>g =
[

T>g1 T>g2 . . . T>gl . . . T>gn
]
. (6)

The simple four element, roof-like structure of Fig. 1 is employed in
the following to discuss the procedure that derives the elastic response
characterization for the structure from its elemental counterparts.

The structure comprises nine nodes, whose location in space is de-
fined according to a global reference system OXY Z, see Table 1.

The structure is composed by four, identical, four noded isopara-
metric shell elements, whose formulation is described in the preceding
section ??.

A grayscale, normalized representation of the element stiffness ma-
trix is shown in Figure 2, where the white to black colormap spans
from zero to the maximum in absolute value term.

The mapping between local, element based node numbering and
the global node numbering is reported in the connectivity Table 2.

Such i) local to global node numbering mapping, together with
ii) the change in reference system mentioned above, defines a set of
elemental DOF mapping matrices, P ej , one each j-th element. Such
matrices are defined as follows: the i-th row the P ej matrix contains

1Unless otherwise specified, the displacement and force terms refer to the DOFs,
and the suitable actions that perform work with their variation, respectively. They
are in fact generalized forces and displacements.
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g3
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g5

g4

g6

g9

g8

g7

θe1n1 ı̂e1

we1n2 k̂e1

e1

e3

e2

e4

we1n2 k̂e1

θe1n1 ı̂e1

= ug2 ı̂g2 + vg2 ̂g2 + wg2 k̂g2

= θg1 ı̂g1 + ϕg1 ̂g1 + ψg1 k̂g1

k̂ı̂g∗
k̂g∗

̂g∗
ı̂

k̂
̂

ı̂
̂

k̂

Figure 1: A simple four-element, roof-like structure employed in dis-
cussing the assembly procedures. The elements are square, thick plates
whose angle with respect to the global XY plane is 30◦

node X Y Z

g1 −lc 0 +l
g2 0 +ls +l
g3 +lc 0 +l
g4 −lc 0 0
g5 0 +ls 0
g6 +lc 0 0
g7 −lc 0 −l
g8 0 +ls −l
g9 +lc 0 −l

Table 1: Nodal coordinates for the roof-like structure of Figure 1. l is
the element side length, c = cos 30◦ and s = sin 30◦
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Uni

Vni

Wni

Θni

Φni

Ψni

uni vni wni θni ϕni ψni

i = 1 . . . 4

Figure 2: A representation of the stiffness matrix terms for each el-
ement in the example structure; the term magnitude is represented
through a linear grayscale, spanning from zero (white) to the peak
value (black).

n1 n2 n3 n4

e1 g1 g2 g5 g4
e2 g2 g3 g6 g5
e3 g4 g5 g8 g7
e4 g5 g6 g9 g8

Table 2: Element connectivity for the roof-like structure of Figure 1.
As an example, the node described by the local numbering e3n2 is
mapped to the global node g5.
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dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue3ni

ve3ni

we3ni

θe3ni

ϕe3ni

ψe3ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue4ni

ve4ni

we4ni

θe4ni

ϕe4ni

ψe4ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

Pe1

Pe2

Pe3

Pe4

Figure 3: A grayscale representation of the terms of the four P ej

mapping matrices associated the elements of Fig. 1. The colormap
spans from white (zero) to black (one); the lighter and the darker
grey colors represent terms that equate in modulus sin 30◦ and cos 30◦,
respectively. 5
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the coefficients of the linear combination of global DOFs that equates
the i local DOF of the j-th element; an example is proposed in the
following to illustrate such relation.

With reference to the structure of Figure 1, we1n2 and θe1n1 re-
spectively represent the 10th and the 13th local degrees of freedom of
element 1.

Their global representation involves a subset of the g2 and g1 global
nodes DOFs, respectively, namely

we1n2 = 〈k̂e1, ı̂g2〉ug2 + 〈k̂e1, ̂g2〉vg2 + 〈k̂e1, k̂g2〉wg2 (7)

θe1n1 = 〈̂ıe1, ı̂g1〉θg1 + 〈̂ıe1, ̂g1〉φg1 + 〈̂ıe1, k̂g1〉ψg1 (8)

where ı̂e1,̂e1, k̂e1 are the orientation vectors of the element 1 local
reference system, ı̂g1,̂g1,k̂g1 and ı̂g2,̂g2,k̂g2 are the orientation vectors
of the global nodes 1 and 2 reference systems, and 〈·, ·〉 represents
their mutual scalar product, or, equivalently, the cosinus of the angle
between two unit vectors.

The 10th and the 13th row of the P e1 mapping matrix are defined
based on Eqs.7 and 8, respectively, and they are null except for the
elements [

P e1

]
10,7

= 〈k̂e1, ı̂g2〉
[

P e1

]
13,4

= 〈̂ıe1, ı̂g1〉[
P e1

]
10,8

= 〈k̂e1, ̂g2〉
[

P e1

]
13,5

= 〈̂ıe1, ̂g1〉[
P e1

]
10,9

= 〈k̂e1, k̂g2〉
[

P e1

]
13,6

= 〈̂ıe1, k̂g1〉,

being ug2,vg2,wg2,θg1,φg1 and ψg1 the 7th, 8th, 9th, 4th, 5th and 6th
global degrees of freedom according to their position in d g.

Figure 3 presents a grayscale representation of the four P ej matri-
ces; please note the extremely sparse nature of those matrices, whose
number of nonzero terms scales with the single element DOF cardinal-
ity, whereas the total number of terms scale with the whole structure
DOF cardinality.

The rows of the rectangular P ej mapping matrix are mutually or-
thonormal; the mapping matrix is orthogonal in the sense of the Moore-
Penrose pseudoinverse, since its transpose and its pseudoinverse coin-
cide.

The elemental mapping P ej matrices constitute an artifice that
plays a double role in the local to global DOF mapping; if on one side

6



i
i

“dispensa˙2018˙master” — 2019/5/16 — 15:47 — page 7 — #7 i
i

i
i

i
i

the j-th element DOFs may be derived from their global counterpart
as

d ej = P ej d g, (9)

on the other, the nodal actions expressed according to the local DOF
system may be translated to the global scale by resorting to the trans-
pose (which embodies the pseudoinverse) of the mapping matrix, as
in

G g←ej = P>ej F ej . (10)

Based on 1, 9 and 10, the contribution of the j-th element to the
elastic response of the structure may finally be described as the vector
of global force components

F g←ej = P>ej K ej P ej d g; (11)

that have to be applied at the structure DOFs in order to equilibrate
the elastic reactions that arise at the nodes of the j-th element, if a
deformed configuration is prescribed for the latter according to the d g

global displacement mode.
By accumulating the contribution of the various elements in a struc-

ture, the overall relation is obtained

F g =
∑
j

F g←ej =

∑
j

P>ej K ej P ej

 d g = K g d g, (12)

that defines the K g global stiffness matrix as an assembly of the ele-
mental contributions. The contribute accumulation at each summatory
step is graphically represented in Fig. 4, in the case of the example
structure of Fig. 1.

The global stiffness matrix is symmetric, and it shows nonzero
terms at cells whose row and column indices are associate to two DOFs
that are bridged by a direct elastic link – i.e., an element exists, that
insists on both the nodes those DOFs pertain; since only a limited
number of elements insist on each given node, the matrix is sparse, as
shown in Fig. 4d.

An favourable numbering of the global nodes may be searched for,
such that the nonzero terms are clustered within a (possibly) nar-
row band around the diagonal; the resulting stiffness matrix is hence
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banded, condition this that reduces both the storage memory require-
ments, and the computational effort in applying the various algebraic
operators to the matrix.

The stiffness matrix (half-)bandwidth may be predicted by evalu-
ating the bandwidth required for storing each element contribution

bej = (imax − imin + 1) l, (13)

and retaining the
b = max

ej
bej (14)

peak value; in the formula 13, l is the number of DOF per element
node, whereas imax and imax are the extremal integer labels associated
to the element nodes, according to the global numbering.

0.1.3 External forces assembly

The element vector forces are accumulated to derive global external
forces vector F g, as in

F g =
∑
j

P>ej F ej ; (15)

the transposed P>ej mapping matrix is employed to translate the ac-
tions on the local DOFs to their global counterpart.
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dg1 dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9

F g1

F g2

F g3

F g4

F g5

F g6

F g7

F g8

F g9

bsymm

(a) (b)

(c) (d)

Figure 4: Graphical representation of the assembly steps for the stiff-
ness matrix of the Fig. 1 structure. The zero-initialized form for the
matrix that precedes the (a) step is omitted.
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