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0.1 Beam axis and cross section definition

E| A necessary condition for identifying a portion of deformable body
as a beam — and hence applying the associated framework — is that its
centroidal curve is at least loosely recognizable.

Once such centroidal line has been roughly defined, locally perpen-
dicular planes may be derived whose intersection with the body itself
defines the local beam cross section. Then, the G center of gravity posi-
tion may be computed for each of the local cross sections, thus defining
a second, refined centroidal line. A potentially iterative definition for
the beam centroidal axis? is hence obtained.

A rather arbitrary orientation may then be chosen for the centroidal
curve.

A local cross-sectional reference system may be defined by aligning
the normal z axis with the oriented centroidal curve, and by employing
as the first in-section axis, namely x, the projection onto the cross-
section plane of a given global © vector, that is assumed to be not
parallel to the beam axis.

The second in-section axis y is then derived, in order to obtain
a local Gryz right-handed coordinate system, whose unit vectors are
77, k.

Such construction of the local reference system for the beam branch
is consistent with most the [Finite Element (FE)| codes.

If a thin walled profile is considered in place of a solid cross section
member — i.e., the section wall midplane is recognizable too (see para-
graph XXX below), then a curvilinear coordinate s may be defined
that spans the in-cross-section wall midplane. Such in-cross-section
wall midplane consists in a possibly multi-branched curve, which is
parametrically defined by a pair of x(s),y(s) functions, with s span-
ning the conventional [0, ] interval.

In the case material is homogeneous along the wall thickness, the
local thickness value t(s) is some relevance, along with a local through-
wall-thickness coordinate r € [—t(s)/2, +t(s)/2].

! This work by Enrico Bertocchi, orcid.org/0000-0001-7268-7961, is licensed
under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

2here, centroidal curve, centroidal line, centroidal axis, or simply beam axis are
treated as synonyms.
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Such s, 7, in-section coordinates based on the profile wall may be
employed in place of their cartesian x,y counterparts, if favourable.

0.2 Joints and angular points

Beam axis may be discontinuous at sudden body geometry changes; a
rigid body connection is ideally assumed to restrict the relative motion
of the proximal segments.

Such rigid joint modeling may be extended to more complex n-way
joints; if the joint finite stiffness is to be taken into account, it has to
be described through the entries of a rank 6(n — 1) symmetric square
matrix Pl

At joints and at the beam axis angular points the cylindrical bod-
ies obtained by sweeping the cross sections along the centroidal curve
branches do usually overlap, and in general they only loosely mimic
the actual deformable body geometry.

The results obtained through the local application of the elemen-
tary beam theory are of a problematic nature; they may at most be
employed to scale the triaxial local stress/strain ﬁeldsﬁ that are evalu-
ated resorting to more complex modelings.

0.3 Cross-sectional resultants for the spatial
beam

At any point along the axis the beam may be notionally split, thus
obtaining two facing cross sections, whose interaction is limited to three
components of interfacial stresses, namely the axial normal stress o,
and the two shear components 7., 7.,.

Three force resultant components may be defined by integration
along the cross section area, namely the normal force, the y- and the

3i.e., joint stiffness is unfortunately not a scalar value.

4The peak stress values obtained through the elementary beam theory may be
profitably employed as nominal stresses within the stress concentration effect frame-
work.
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x- oriented shear forces, respectively defined as
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Three moment resultant components may be similarly defined, namely
the z- and y- oriented bending moments, and the torsional moment.
However, if the centroid is the preferred fulcrum for evaluating the
bending moments, the below discussed C' shear center is employed for
evaluating the torsional moment; the two points might coincide, e.g. if
the cross section is twice symmetric, but they are distinct in general.
We hence define

Mm = M(sz) = /AUzzydA

My = Mg, =— /A 0,,xdA

My = Micy = [ [relo = ac) = realy — )] 4

The applied vector associated to the normal force component (G, N /%)
is located at the section center of gravity , whereas the shear force
(C, Qg+ Qy]) is supposed to act at the shear center; such convention
decouples the energy contribution of force and moment components for
the straight beam.

Common alternative names for such resultants are component of
internal action, (beam) generalized stress components etc.; they may
also be interpreted as the reactions of an internal clamp constraint
that joins the upstream and downstream portions of the structure,
notionally severed at the cross section under scrutiny.

Most of the sign rules for the resultant force and moment compo-
nents introduced for the plane problem lose their significance in the
spatial realm.

The following convention is proposed for the few cases in which a
sign characterization for the stress resultant components is required,
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Figure 1: Stress resultants for the beam segment and the associ-
ated sign convention; for the sake of readability, symmetric and skew-
symmetric components are split apart in Figure. Please remind that —
even if visually applied at notable locations — the moment components
have no definite application point within the cross section.

which originates from the definition of the local reference system, which
in turn derives from the oriented nature of the beam branch, and from
the © orientation vector, as discussed above; such rule is widely em-
ployed by FE codes.

Let’s consider to the beam segment of Fig. 1| (a) and (b): positive
resultant components adopt the direction of the associated local axis
at the beam segment end that shows an outward-oriented local z axis;
at beam segment ends characterized by an inward-oriented local z axis,
the same positive stress resultant components are counter-oriented to
the respective local axes.

According to such a rule, axial load is positive if tractive, and the
torsional moment is positive if deflects into a right helix a line traced
parallel to the axis on the undeformed profile. No intuitive formulations
are however available for the bending moment and shear components.

Cross section resultants may be obtained, based on equilibrium for
a statically determinate structure. The ordinary procedure consists in

e notionally splitting the structure at the cross section whose re-
sultants are under scrutiny;
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e isolating a portion of the structure that ends at the cut, whose
locally applied loads are all known; the structure has to be pre-
liminarily solved for the all the constraint reactions that act on
the isolated portion;

e setting the equilibrium equations for the isolated substructure,
according to which the cross-sectional resultants are in equilib-
rium with all the loads locally applied to the isolated portion.

0.4 A worked example

The present paragraph is devoted to the evaluation of the stress resul-
tants along the BD beam segmentﬂ of the simple structure of Figure
2k, which mimics from within the spatial beam framework boundaries
the deformable body of Figure [2h.

The assumed distribution for the shear stress components 7, and
7y- along the C-section thin wall, which is derived from a generalized
application of the Jourawsky shear theory, locates its resultants in a
shear center C which is external to the cross section convex envelope,
as shown in Fig. [2p.

The shear center locus is represented in Fig. as a dotted line,
wherever distinct from the centroidal line.

The [ distance from the B corner parametrically pinpoints a section
along the BD segment, in correspondence of which the stress resultant
components are evaluated.

The structure is then notionally partitioned in two substructures,
and the portion spanning from the section under scrutiny to the free
end is elected for further equilibrium analysis. Equilibrium equations
for the other portion would involve the preliminary evaluation of the
six constraint reaction components at D, based on global equilibrium.

Figure collects the loads applied to such isolated substructure,
including the six components of internal action at the section under
scrutiny; the following equilibrium equations are set:

e translational equilibrium along the local x axis, namely

tx: + F+ Qx =0;

5The more straightforward treatise of the AB segment is left to the reader; results
will be here reported for discussion.
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Figure 2: A planar beam structure, loaded both in-plane and out of
plane. Please note that the plane the structure lies on is a symmetry
plane for the material and for the constraints; the applied load may
hence be decomposed into symmetric and skew-symmetric parts, lead-
ing to two uncoupled problems. A general spatial structure may be
derived e.g. by turning the C-profile 90° on its axis.
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e translational equilibrium along the local y axis, namely
ty : +Qy = 0;
e translational equilibrium along the local z axis, namely

tz: —R+ N =0;

e rotational equilibrium with respect to the centroidal, z-aligned
axis, namely
rGx: + Rb+ M, = 0;

e rotational equilibrium with respect to the centroidal, y-aligned
axis, namely
rGy: — Fl+ My = 0;

e rotational equilibrium with respect to z-aligned axis passing through
the shear center, namely

rCz: + Fa+ My = 0;

from which the stress resultants may be trivially obtained.

The meditated choice for the rotational equilibrium axis makes the
arm of the possibly unknown axial and shear forces vanish, thus de-
coupling the equations.

Also, it is suggested to analyze the contributions to the rotational
equilibrium with respect to a given axis by resorting to a projected
view of the isolated substructure in which such axis is aligned with the
line of sigh‘clﬂ7 see Figure |3} the information lost in the projection are
in fact of null relevance for the rotational equilibrium under scrutiny.

Figure[2e depicts the equilibrium state of the isolated substructure,
and the visual comparison with its counterpart offers an overview
for the components of internal action.

A few final remarks follow.

Si.e. a view in which such axis is exiting (or entering) the plane of view



“master” — 2020/3/11 — 11:19 — page 8 — #8

&._rGx. Tﬁ‘
Eamu
m
I o.Ma 6l G
2 i S
VN
My cross gechow unde

Scrubing

z J
R
lx / A/B
q.¢ My
Ton evoss sechoun
M\X* vnder scruting
eq. rCa
£ : 8

c1oss secTion
Gnder scautiny

Figure 3: Projected views useful for discussing the isolated substruc-
ture rotational equilibrium. TODO.
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The stress resultants at each section depend on the location of
its center of gravity and shear center, and on the orientation of the
local reference system; any variation of the cross section design which
preserves the named elements does not require a reevaluation of the
stress resultants.

Even if the described procedure is of general application within
the spatial beam realm, the simple structure discussed exhibits elastic
domain symmetry with respect to the plane the two centroidal seg-
ments lie on, a non-general property this, which is also respected by
the specific constraints.

Such a peculiarity, along with the assumed linearity of the structure
response, allows for the decomposition of the problem into a symmetric
part, and into a skew-symmetric part. The symmetric portion of the
applied load is embodied by the R force, whereas the skew-symmetric
load portion is embodied by F.

Abetted by the fortunate orientation of the local axesﬂ the three
N, Qy, My in-plane resultants are produced by R alone, wherease the
three Qx, My, My out-of-plane resultants are induced by F' alone. In-
plane (out-of-plane) resultants are in fact symmetric (skew-symmetric)
with respect to the plane the beam branches lies on, and the two sym-
metric and skew-symmetric parts of the problem are uncoupled.

Such property is useful in analyzing plane structures subject to
mixed in-plane and out-of-plane loads, as the one under scrutiny.

It is finally noted that a general spatial structure may be derived
from the proposed one e.g. by turning the C-profile 90° on its centroidal
axis, and thus losing the elastic body symmetry.

“one parallel and one orthogonal to the symmetry plane
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Figure 4: An overview of symmetrical and skew-symmetrical (general-
ized) loading and displacements.

0.5 Symmetry and skew-symmetry conditions

Symmetric and skew-symmetric loading conditions are mostly rele-
vant for linearly-behaving systems; a nonlinear system may develop
an asymmetric response to symmetric loading (e.g. column buckling).

Figure 4| collects symmetrical and skew-symmetrical pairs of vectors
and moment vectors (moments); those (generalized) vectors are applied
at symmetric points in space with respect to the reference plane. Vec-
tors which are either normal or parallel to the plane are considered,
that may embody the same named components of a generally oriented
vector.

It may be observed that the symmetric/skew-symmetric condition
for otherwise analogous pairs swaps in moving from vectors to moment
vectors, and from the orthogonal to the parallel orientation.

The pair members may be moved towards the reference plane up

10
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to a vanishing distance ¢; for null € both the point and the image lie on
the plane, and they coincide. In the case different (in particular, op-
posite and nonzero) vectors are associated to the two coincident pair
members, the physical field that such vectors are assumed to repre-
sent (displacements, applied forces, etc.) is not single-valued at the
reference plane; such condition deserves an attentive rationalization.

Vector and moment pairs in Figure [4] may embody, depending on
the context, displaments (denoted as u), rotations (@), forces (F') and
moments (M); the latters may be both related to internal and external
actions; in the following, the feasibility of nonzero magnitude pairs is
discussed as the members approach the reference plane (¢ — 0).

The (generalized) displacement components decorated with the =
marker may induce material discontinuity at points laying on the [skew-
Jsymmetry plane, if nonzero. Except for specific cases in which the
discontinuity is expected — e.g. or notionally infinitesimal openings at
the symmetry plane — they have to be constrained to zero at those
points, thus introducing the so-called [skew-]symmetry constraints.

When an halved portion of the structure is modeled in place of the
whole, since the response is expected to be [skew-]symmetric, these
constraints act in place of the portion of the structure that is omitted
from our model, and their reactions may be interpreted as internal
action components at the coupling interface between the two halves.

In case of symmetry, a constraint equivalent to a planar joint is
to be applied at points laying on the symmetry plane for ensuring
displacement /rotation continuity between the modeled portion of the
structure, and its image. In case of skew-symmetry, a constraint equiv-
alent to a doweled sphere - slotted cylinder joint (see Figure, where
the guide axis is orthogonal to the skew-symmetry plane, is applied at
the points belonging to the intersection between the deformable body
and the plane.

The ¢ internal action components are null at points pertaining
to the [skew-]symmetry plane, since they would otherwise violate the
action-reaction law. The complementary § internal action components
are generally nonzero at the [skew-|symmetry plane.

The t external action components are not allowed at points along
the [skew-]symmetry plane; instead, the complementary ¢ generalized
force components are allowed, if they are due to locally applied external
actions.

11
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Figure 5: The doweled sphere - slotted cylinder joint, which is associ-
ated to the skew-symmetry constraint. In this particular application,
the cylindrical guide may be considered as grounded.

In the case of a symmetric structure, generally asymmetric applied
loads and imposed deflections may be decomposed in a symmetric part
and in a skew-symmetric part; the problem may be solved by employing
a half structure model for both the loadcases; the results may finally
be superposed since the system is assumed linear.

0.6 Periodicity conditions

TODO, if required.

12
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