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0.1 Basic formulation for plates and shells

0.1.1 Some assumptions for the kinematic model of the
plate

A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure1 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
(tt) distribution of the constituent materials.

The geometrical midsurface is of little significance if the material
distribution is not symmetric2; such midsurface, in fact, exhibits no rel-
evant properties in general. Its definition is nevertheless pretty straigh-
forward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term o is considered that pointwisely shifts the geometric midsurface
with respect to the reference surface. A positive offset shifts the mid-
surface towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely

1Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

2If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the b membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

In the case of limited3 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

Figure 1 shows the basic kinematic relations for the shear deformable
(Mindlin) plate model; in the undeformed configuration, P is a generic
material point along the plate thickness, and Q is its normal projection
on the reference plane. Such Q point is named reference point for the
tt normal segment it belongs to.

A local reference system is defined, whose third axis z is normal
to the undeformed midsurface; the first in-plane (ip) x axis may be
arbitrarily oriented, e.g. by projecting a global v̂ unit vector, and the
remaining y axis may be construed such that it finalizes the right xyz
triad.

Then, the deformed configuration is considered, and the motion
of both the points is monitored according to two mutually orthogonal
views.

The P displacement components (uP, vP, wP) may be defined as
a function of the motion of its reference point Q, described in terms
of its displacement components (u, v, w), plus the two θ, φ rotation
components with respect to the x, y ip local axes, respectively. Those
angular displacements are defined with respect to the normal segment
orientation, as measured on the orthogonally projected views. After
some cumbersome trigonometric manipulations4 we obtain

uP = u+ z (1 + ε̌z)
cos θ√

1− sin2 φ sin2 θ
sinφ

vP = v − z (1 + ε̌z)
cosφ√

1− sin2 φ sin2 θ
sin θ

wP = w + z

(
(1 + ε̌z)

cosφ cos θ√
1− sin2 φ sin2 θ

− 1

)
,

3with respect to thickness
4in which it may happen to miss some higher order terms, as the author persis-

tently did in previous versions of the present notes
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Figure 1: Relevant dimensions for describing the deformable plate kine-
matics. Here, two a, b factors are introduced which reduce to unity for
small rotations and strain.
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where z (1 + ε̌z) is the length of the PQ segment on the deformed con-
figuration, which is further scaled by the fractional factors due to pro-
jection along Fig. 1 views.

The ε̌z average z strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

ε̌z(z) =
1

z

∫ z

0
εzdς

=
1

z

∫ z

0
− ν

1− ν (εx + εy) dς,

the second expression holding in the case of isotropic materials only.
The stress component σz which is normal to the reference surface is

in fact assumed to be either zero or negligible. Being a full discussion5

of such a plane stress assumption beyond the scope of the present
contribution (bspc), we limit our treatise to the observation that, in
the inevitably anecdotal case of Fig. 2, the ratio between the oop
σz stress component and its ip counterparts varies with the square
of the ratio between the thickness and an in plane significant length.
The engineering relevance of such a normal stress component rapidly
vanishes with increasing plate thinness. The Fig. 2 examples also
points out the intermediate magnitude decay of the oop shear stresses,
whose normalized form linearly varies with the same thinness ratio.

Such displacement components may be linarized with respect to i)
the small rotations and ii) small εz strain hypotheses, thus obtaining
the following expressions

uP = u+ zφ (1)

vP = v − zθ (2)

wP = w. (3)

5Such assumption is coherent with the free surface conditions at the top and
the bottom skins, and with the moderate thickness of the elastic body, that allows
only a narrow deviation from the boundary values. In fact, the equilibrium of a
partitioned, tt material segment requires that

σz(z) = −
∫ z

−h/2+o

∂τzx
∂x

+
∂τyz
∂y

dz = +

∫ +h/2−o

z

∂τzx
∂x

+
∂τyz
∂y

dz,

where τzx, τyz are the interlaminar, oop shear stress components, whose ip gradient
is limited.
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Figure 2: Normalized stress component magnitude in the case of a
simply supported circular plate subject to normal pressure, according
to the spatial theory of elasticity framework, see [1, p.349]. A ho-
mogeneous and isotropically elastic circular plate of diameter d and
thickness h is simply supported along its perimeter (i.e. apart from
the their transverse component, displacements are free, and so are ro-
tations), and it is loaded by a unit pressure at its upper surface. The
peak magnitude of the transverse stress σz is observed at the pressur-
ized surface, and it equates the pressure value. The oop shear stress
τzr is maximal along the perimeter, and it equates 3

8

(
d
h

)
. The two

equal ip direct stress components σr = σθ reach the peak value of
3(ν+3)

32

(
d
h

)2
+ ν+2

20 in correspondence of the plate center, at the surface;
its thin plate counterpart, σref , which lacks the second term, is taken as
the normalizing stress value. The remaining τrθ, τθz stress components
are zero due to axisymmetry. The commonwise ν = 0.3 Poisson ratio
value is used in tracing the Figure.
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A treatise of the large rotation and/or large strain nonlinear case
is, again, bspc.

According to such linearized expression, the kinematics of the P
points originally6 laying on a tt segment that is normal at Q to the
reference surface may be described as that of a rigid body.

The intrinsic shear related warping is either negated or neglected,
along with any sliding motion of the P points along the segment7.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular the
external actions act on the plate deformable body only through their
tt resultants, and no stress/strain components, or work, are associated
by the shell framework to wall squeezing actions, e.g. laminations.

We thus observe that, according to the shell framework, the follow-
ing external actions are not distinguishable: i) a q pressure applied at
the upper surface, ii) a −q traction applied at the lower surface, iii) a
q differential pressure between the outer surfaces, with p + q applied
at the top, and a generic p applied at the bottom, and iv) a trans-
verse inertial force whose area density is q, namely due to a oppositely
oriented q

ρh acceleration, where ρ is the material density. Also, a fp,
friction induced, x-oriented shear action at the upper surface is not dis-
tinguishable from an analogous distributed force for unit area applied
at the reference surface, plus a y-oriented distributed moment per unit
area, whose magnitude is fp(h/2 + o).

By observing the deformed configurations in Fig. 1, the normal

displacement
(
∂w
∂x ,

∂w
∂y

)
gradient – i.e. the gained slope of the deformed

reference surface, with respect to its original orientation – is made
up of two terms, namely the rotation of the normal segment, which
originates from the accumulation of the flexural curvature, and the
shear compliance, which resembles the transverse slippage typical of a
card deck. The following expressions are derived

6i.e. in the undeformed configuration
7The elision of higher order terms renders the laminate kinematically – but not

elastically – indistinguishable from its counterpart that might derive from a plane
strain assumption.
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∂w

∂x
= γ̄zx − φ (4)

∂w

∂y
= γ̄yz + θ (5)

in which the bar notation employed for the oop shear components
emphasizes their tt average nature.

0.1.2 Local and generalized strains

The ip strain components may hence be derived at the P point through
differentiation, and in particular we have

εx =
∂uP
∂x

=
∂u

∂x
+ z

∂φ

∂x
(6)

εy =
∂vP
∂y

=
∂v

∂y
− z ∂θ

∂y
(7)

γxy =
∂uP
∂y

+
∂vP
∂x

(8)

=

(
∂u

∂y
+
∂v

∂x

)
+ z

(
+
∂φ

∂y
− ∂θ

∂x

)
(9)

It clearly appears from the expressions above that the pointwise
strain values are due to the sum of i) the strain components as observed
at the reference plane,

e =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =

 ex
ey
gxy

 ≡ εQ (10)

which are named membrane strains8 in the customary case in which
the material is symmetric9 with respect to the reference plane, plus ii)

8 e is an alternative symbol for the more natural, and previously employed ε̄ ,
whose double barred appearance is however terrible. To complete the transition,
also the ε̄x, ε̄y and γ̄xy symbols have been changed onto their ex, ey, gxy counterpart.

9or, more generally, elastically balanced
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terms that linearly scale with the z distance from such a plane, whose
coefficients

κ =

 +∂φ
∂x

−∂θ
∂y

+∂φ
∂y − ∂θ

∂x

 =

 κx
κy
κxy

 (11)

are named curvatures.10 The strains at the reference surface, and the
curvatures constitute the set of plate [shell] generalized strain compo-
nents, which are e.g. usually returned by Finite Element (fe) solvers;
those components allow for the following compact representation of the
ip strains at P

ε P ≡ ε = e + z κ . (12)

It worth to be stressed that the kinematic assumptions for the plate
model impose a linear tt profile for each single ip strain component;
those components may hence be sampled at the outer surfaces alone,
without loss of information. It is here anticipated that an analogous
behaviour is proper of the ip stress components if and only if (iif) the
material is elastically homogeneous along the thickness .

The two κx and κy curvatures equate to the inverse of the nor-
mal curvature radii, as probed along the respective local directions;
those curvatures are positive if the upper plate fibers are stretched,
or, equivalently, if the reference surface acquires convexity if observed
from above – i.e. from a point on the positive z axis.

Figure 3 clarifies the nature of the mixed curvature term κxy, which
is e.g. typical of open thin walled members – and flat plates as a
particular case – subject to torsion11.

10Please note that in the case of shells, the bare curvature name may be confusing,
since it might refer to either

• the initial, original, geometric, undeformed curvature, which is proper of the
shell before the application of some external loads, or to the

• strain, strain-induced, elastic[-plastic], bending, flexural curvature, or curva-
ture change, which consist in the variation of the thin wall curvature due to
the effect of the applied loads.

Except for [locally] flat panels, the author suggests to always specify which kind of
curvature we refer to. Here, curvature is used with reference to curvature change.

11the torsional curvature denomination for the κxy term, that the present author
has widely employed in the past, is not so proper nor widespread, so it might be
better avoided. Flexure and torsion are in fact not as uncoupled in the plate realm

8
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(b)

(c) (d)

(a)

x

y

θ
φ

Figure 3: Positive κxy mixed curvature for the plate element. The
grayscale coloring is proportional to the normal displacement w, which
spans from an extremal downward deflection (black), to an equal in
modulus extremal upward deflection (white). The gray level at the
centroid is associated to zero. Subfigure (a) shows the positive γxy shear
strain at the upper surface, the ip undeformed midsurface, and the
negative γxy at the lower surface; the point of sight related to subfigures
(b) to (d) are also evidenced. θ and φ rotation components decrease
with x and increase with y, respectively, thus leading to positive κxy
contributions. As shown in subfigures (c) and (d), the mixed curvature
of subfigure (b) evolves into two anticlastic bending curvatures if the
reference system is aligned with the square plate element diagonals,
and hence rotated by 45◦ with respect to z.
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0.1.3 Stresses, and their through-thickness resultants

The ip stress components at P are derived from strains by referring to
the material elastic constants, and to the plane stress hypothesis. We
hence have  σx

σy
τxy

 = σ = D ε = D e + zD κ , (13)

where D embodies the material constitutive law which elastically re-
lates to ip stress/strain components, and which is derived according to
the plane stress hypothesis.

In the particular case of an isotropic material – the generally or-
thotropic case is treated below – such a matrix takes the form

D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (14)

whereas the normal component of strain, which is due to the Poisson
shrinkage alone, may be evaluated as

εz = − ν

1− ν (εx + εy) . (15)

The attentive reader may observe that no mention is made to the
oop shear stresses, to which a paragraph is devoted below.

Moreover, the absence of transverse shear terms in current para-
graph formulation, and in particular in Eq. 13, hints for the ip and the
oop stress/strain components to be elastically uncoupled; the material
has evidently been implicitly assumed as monoclinic with respect to the
reference surface. Such a condition holds e.g. for isotropic materials,
and for the orthotropic plies usually employed in laminates.

As in the classical theory of beams, stress components are inte-
grated along the relevant unit of analysis, namely the cross section
there, and the normal segment here, to obtain suitable internal action
resultants.

as they are in beam theory, and flexure might be conveniently employed as an
umbrella term that also encompass profile (open and thin) wall deformation due to
pure torsion.
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Figure 4: XXX

According to the thin plate framework, stress resultants take the
form of forces per unit length along the surface, and they may be
expressed as

q =

 qx
qy
qxy

 =

∫
h
σ dz

=

∫
h

D dz︸ ︷︷ ︸
a

e +

∫
h

D zdz︸ ︷︷ ︸
b

κ (16)

in the case of the ip components, whereas for the oop components we
have

q z =

[
qxz
qyz

]
qxz =

∫
h
τzxdz qyz =

∫
h
τyzdz. (17)

Those quantities may be interpreted with respect to their (doubled if
single) subscripts as follows: qab is the b component of internal ac-
tion that is transmitted through a tt imaginary gate, whose in plane
width is unit and whose normal is oriented along a. According to this
rationalization, the q components are also called stress flows.

Besides the internal action resultants of the force kind, by weighting
the stress component contribution based on their z lever arm we obtain

11
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the moment stress resultants (or moment flows), whose expressions
follow

m =

 mx

my

mxy

 =

∫
h
σ zdz

=

∫
h

D zdz︸ ︷︷ ︸
b≡ b T

e +

∫
h

D z2dz︸ ︷︷ ︸
c

κ . (18)

A selection of internal action components is represented in Fig. 4
shows, along with the stress distributions they arise from.

0.1.4 Constitutive equations for the plate

By employing the matrices defined in Eqs. 16 and 18, the cumulative
generalized strain - stress resultants relations for the plate (or for the
laminate) may be summarized in the following expressions[

q

m

]
=

[
a b

b T c

] [
e
κ

]
(19)

which are usually referred to as the constitutive equations of the [lam-
inate] plate, and the coefficient matrix, named constitutive matrix for
the laminate, summarizes the elastic response of the latter.

The contribution of the ip stress/strain components to the elastic
strain energy area density12 is defined based on the previous relation
as

υ† =
1

2

[
q

m

]> [
e
κ

]
(20)

=
1

2

[
e
κ

]> [
a b

b T c

] [
e
κ

]
. (21)

The a and the c minors of the constitutive matrix characterize
the plate stiffness with respect to membrane and flexural load case
families respectively; the membrane/flexural coupling stiffness minor

12i.e. strain energy per unit reference surface area
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b , which is in general nonzero, vanishes if the material is symmetrically
distributed with respect to the reference surface.

In the commonwise case of tt homogeneous material, and null off-
set13 we have

a = hD b = 0 c =
h3

12
D ,

i.e. the membrane stiffness varies linearly with the wall thickness,
the flexural stiffness varies with the cube of the thickness, and the
membrane and the flexural loadings are mutually uncoupled. Such a
laminate elastic properties dependence on thickness essentially holds
also for laminates, if the tt distribution of the various materials is
kept comparable.

0.1.5 The transverse shear stress/strain components

A full treatise on the title topic is, due to its complexity, bspc; starting
points for further investigation my be found in [2], [3] or in the theory
manual of your favourite fe solver14.

The two transverse shear components

γ z =

[
γ̄yz
γ̄zx

]
are in fact more directly recognizable as further contributions to the(
∂w
∂x ,

∂w
∂y

)
normal deflection gradient, with respect to what is attributable

to flexure alone, than tt averages of actual, pointwise shear strains –
see e.g. Figure 1. Also, the two

q z =

[
qxz
qyz

]
stress flow components defined in Eq. 17 are recognized to perform
work15 on the same γ̄yz and γ̄zx transverse shear components, respec-
tively; the transverse shear contribution to the elastic strain energy per

13In the presence of a nonzero offset between the reference and the median planes,
the uncoupled nature of the plate membrane/flexural loadings is only formally lost.
If the same problem is considered based on a median reference plane, in fact, such
a property is obviously restored.

14See e.g. MSC.Marc 2013.1 Documentation, Vol. A, pp. 433-436
15in particular, work for unit reference surface area
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unit ref. surface area is hence

υ‡ =
1

2
q >z γ z =

1

2
qxzγ̄xz +

1

2
qyzγ̄yz. (22)

The constitutive equation for the transverse shear is set at normal
segment (vs. punctual) level, with the declared aim of collecting the
elastic strain energy contributions along the thickness, and they are
usually formulated as

υ‡ =
1

2
γ >z χ

∫
h

G dz︸ ︷︷ ︸
Γ

γ z (23)

where G is the pointwise constitutive matrix for the transverse shear
components16 – which is considered through its tt integral, χ is a shear
correction factor – which accommodates for possibly any incongruence
in the formulation, and Γ is an emended transverse shear constitutive
matrix for the whole plate. By comparing Eqns. 22 and 23 we also
derive the de facto transverse shear constitutive relation

q z = Γ γ z. (24)

for the Mindlin shear deformable plate.
In the case of isotropic materials, G is a diagonal matrix whose

terms equate the shear modulus, i.e.

G =
E

2 (1 + ν)

[
1 0
0 1

]
,

whereas the χ shear correction factor is usually assumed as 5
6 if the

material is tt uniform17; different χ values are however proposed in
literature, see e.g. [4], along with different procedures18 for evaluating
Γ .

16 G is the 2 by 2 matrix s.t.

[
τzx
τyz

]
= G

[
γzx
γyz

]
.

17please note the parallel with the inverse 1.2 correction factor for the shear
contribution to the beam elastic strain energy, proper of the solid rectangular cross
section.

18we report as an example the notable case of of honeycomb panels – whose
transverse shear compliance is rarely negligible, in which Γ is defined as the G foam

transverse shear constitutive matrix for the foam/honeycomb material interposed
between the outer skins, multiplied by the overall panel thickness h; in this case the
χ transverse shear correction factor is implicitly defined as unity.

14
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In the case pointwise values are requested for the τzx and τyz stress
components – e.g. in the analysis of interlaminar stresses in composite
laminates, those quantities are derived from the assumed absence of
shear stresses on the lower surface, and by accumulating the ip stress
component contributions to the x and y translational equilibria up to
the desired z sampling height. We hence obtain

τzx(z) = −
∫ z

−h
2

+o

∂σx
∂x

+
∂τxy
∂y

dz (25)

τyz(z) = −
∫ z

−h
2

+o

∂τxy
∂x

+
∂σy
∂y

dz. (26)

The parallel is evident with the Jourawsky theory of shear for beams.

0.1.6 Hooke’s law for the orthotropic lamina

Hooke’s law for the orthotropic material ip stress conditions, with re-
spect to principal axes of orthotropy;

D 123 =

 E1
1−ν12ν21

ν21E1
1−ν12ν21 0

ν12E2
1−ν12ν21

E2
1−ν12ν21 0

0 0 G12

 (27)

 σ1

σ2

τ12

 = T 1

 σx
σy
τxy

  ε1
ε2
γ12

 = T 2

 εx
εy
γxy

 (28)

where

T 1 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2

 (29)

T 2 =

 m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2

 (30)

α is the angle between 1 and x;

m = cos(α) n = sin(α) (31)

15
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The inverse transformations may be obtained based on the relations

T−1
1 (+α) = T 1(−α) T−1

2 (+α) = T 2(−α) (32)

Finally

σ = D ε D ≡ D xyz = T−1
1 D 123 T 2 (33)

With regard to the transverse shear constitutive relation, in the
case of an orthotropic material whose oop shear moduli are Gz1 and
G2z we have

G =

[
n2Gz1 +m2G2z mnGz1 −mnG2z

mnGz1 −mnG2z m2Gz1 + n2G2z

]
.

0.1.7 An application: the four point bending test speci-
men.

The case of the four point bending test is considered, see Figure 5a,
with an isotropic and homogeneous specimen material. Specimen di-
mensions are defined as in Figure, where the b the specimen width is
taken as the relevant unit of length.

The width to length ratio of the specimen is less than unity, but far
from being negligible; a treatise according to the plate theory would
hence be more appropriate than the beam model which is usually pro-
posed by normative.

Such a test is based on the assumption that the bending moment –
a beam framework quantity – is constant along the gauge length, and
equal to Fl; such a quantity equates the through-width (tw) integral
of the mx moment resultant, whose value is assumed tw constant and
equal to m∗x = Fl/b. The specimen curvature along the gauge length
is

k∗x =
12Fl

Ebh3
(34)

according to the beam theory; such a value taken as a reference.
The treatise according to the plate theory is far less straightfor-

ward that its trivial beam counterpart, since e.g. we may consider
the two opposite extremal cases of i) unconstrained anticlastic sec-
ondary curvature, or, equivalently, null my transverse (in the sense of
tw, not tt) moment resultant, and ii) cylindrical bending, i.e. null
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transverse κy curvature. The membrane generalized stress/strain com-
ponents are zero, as the transverse shear terms along the gauge length.
The mixed moment resultant and curvature are zero in both the cases,
since they are null at the xz symmetry plane, and they are assumed
tw constant. By applying the constitutive relations proper of the ho-
mogeneous, isotropic plates, we derive for the unconstrained anticlastic
curvature case i)

mx = m∗x my = 0 κx = k∗x κy = −νk∗x,

whereas for the cylindrical bending case ii) we have

mx = m∗x my = νm∗x κx =
(
1− ν2

)
k∗x κy = 0.

We then observe that the nonzero κy transverse curvature predicted
by i) is inconsistent with the hypothesis of a full width line contact at
the supports, whose cylindrical surface is transversely flat; the uncon-
strained anticlastic curvature confines the specimen contact interac-
tion with the inner supports to a point in correspondence of the width
midspan, whereas the outer supports touch the specimen at its edges
only. Such a tw inhomogeneous loading condition induces contact
actions which may effectively oppose the anticlastic curvature, which
locally appears not “unconstrained” anymore.

On the other hand, a my moment resultant which is predicted ac-
cording to cylindrical bending not to vanish at the specimen flanks is
incompatible with the free surface boundary condition; continuity con-
ditions requires in fact that a distributed moment external action is
applied at the specimen flanks, which apparently is not the case.

The actual response of the specimen in terms of moment resultants
and curvatures, as probed at its centroidal axis, is plotted in Fig. 5b
in the case of bilateral support condition, i.e. w = 0 and w = d at
the outer and inner indenters, respectively, being d displacement of the
inner, moving, support. The cylindrical bending solution ii) is observed
at the supports, whereas a progressive transition to the unconstrained
anticlastic curvature solution i) is observed while moving away from
those supported areas. In particular, the central portion of the gauge
length behaves consistently with i).

In Fig. 5c, the same quantities are reported in the actual case
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of unilateral contact at supports, i.e. the Signorini conditions19 are
imposed which consist in

g(y) ≥ 0 (35)

f(y) ≥ 0 (36)

g(y) · f(y) = 0, (37)

where f(y) is the lineic contact force along the width, positive if com-
pressive, and g(y) is the gap between specimen and indenter, namely
g(y) = −w(y) and g(y) = w(y) − d at the outer and inner supports,
respectively.

According to this second model, supports are less effective in locally
imposing a null secondary curvature, thus extending the validity of the
unconstrained anticlastic curvature solution i) to most of the gauge
length.

0.1.8 Final Notes.

A few sparse notes:

• If the unsymmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the b membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness. Such fact, united to the unavoidable ther-
mal cycles that occurs in manufacturing if not in operation, makes
such configurations pretty undesirable.

19Those conditions consist in turn in a no compenetration inequality 35, in a no
tractive contact action inequality 36, and in the mutual local exclusion of nozero
gap and nonzero contact force, 37.
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F

l = b

m∗
x = Fl

b

my ≈ 0
ky ≈ 0ky ≈ −νk∗x
my ≈ νm∗
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xy

anticlastic
curvature

unconstrained
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curvature
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bilateral
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·
m∗
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+ν

mx
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contact

k∗x = 12Fl
Ebh3 a = 3b
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40

z
(a)

(b)

(c)

Figure 5: The not-so-trivial four point bending case, where b is the
specimen out-of-sketch-plane width (we might call it depth). Moment
fluxes and curvatures are sampled at the specimen midwidth, whereas
they may vary while moving towards the flanks; the average value of
mx along the width must in fact coincide with m∗x in correspondence
with the load span.
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ξ

η

−1

n1

1

−1

P (ξ, η)

1

n2

n3n4

1

n1

n2

n3

n4

N1(ξ, η)

ξ

η

(a) (b)

Figure 6: Quadrilateral elementary domain (a), and a representative
weight function (b).

0.2 Preliminary results

0.2.1 Interpolation functions for the quadrilateral do-
main

The elementary quadrilateral domain. A quadrilateral domain
is considered whose vertices are conventionally located at the (±1,±1)
points of an adimensional (ξ, η) plane coordinate system, see Figure
6. Scalar values fi are associated to a set of nodal points Pi ≡ [ξi, ηi],
which for the present case coincide with the quadrangle vertices, num-
bered as in Figure.

A f(ξ, η) interpolation function may be devised by defining a set
of nodal influence functions Ni(ξ, η) to be employed as the coefficients
(weights) of a moving weighted average

f(ξ, η)
def
=
∑
i

Ni(ξ, η)fi (38)

Requisites for such weight functions are:

• for each point of the domain, the sum of the weights is unitary∑
i

Ni(ξ, η) = 1, ∀[ξ, η] (39)

• to grant continuity of the f(ξ, η) function with the nodal samples,
the influence of a node is unitary at its location, whereas the
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influence of the others vanishes there, i.e.

Ni(ξj , ηj) = δij (40)

where δij is the Kronecker delta function.

Moreover, suitable functions should be continuous and straightfor-
wardly differentiable up to any required degree.

Low order polynomials are ideal candidates for the application; for
the particular domain, the nodal weight functions may be stated as

Ni(ξ, η)
def
=

1

4
(1± ξ) (1± η) , (41)

where sign ambiguity is resolved for each i-th node by enforcing Eqn.
40.

The bilinear interpolation function defined by Eqs. 38 and 41
turns into a general linear relation with (ξ, η) if the four sample points
(ξi, ηi, fi) are coplanar – but otherwise arbitrary – in the ξ, η, f space.

Further generality may be introduced by not enforcing coplanarity.
The weight functions for the four-node quadrilateral are in fact

quadratic although incomplete20 in nature, due to the presence of the
ξη product, and the absence of any ξ2, η2 term.

Each Ni(ξ, η) term, and the combined f(ξ, η) function, defined as
in Eqn. 38, behave linearly if restricted to ξ = const. or η = const.
loci – and in particular along the four edges; quadratic behaviour may
instead arise along a general direction, e.g. along the diagonals, as in
Fig. 6b example. Such behaviour is called bilinear.

We now consider the f(ξ, η) interpolation function partial deriva-
tives. The partial derivative

∂f

∂ξ
=

(
f2 − f1

2

)
︸ ︷︷ ︸

[∆f/∆ξ]12

(
1− η

2

)
︸ ︷︷ ︸
N1+N2

+

(
f3 − f4

2

)
︸ ︷︷ ︸

[∆f/∆ξ]43

(
1 + η

2

)
︸ ︷︷ ︸
N4+N3

= aη + b (42)

linearly varies in η from the incremental ratio value measured at the
η = −1 lower edge, to the value measured at the η = 1 upper edge; the
other partial derivative

∂f

∂η
=

(
f4 − f1

2

)(
1− ξ

2

)
+

(
f3 − f2

2

)(
1 + ξ

2

)
= cξ + d. (43)

20or, equivalently, enriched linear, as discussed above and in the following
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behaves similarly, with c = a. Partial derivatives in ξ, η remain con-
stant while moving along the corresponding differentiation direction21.

An equivalent expression for Eq. 38 is the following

f(ξ, η) =
[
N1(ξ, η) · · · Ni(ξ, η) · · · Nn(ξ, η)

]

f1
...
fi
...
fn


= N (ξ, η) f , (44)

which resorts to the inner mechanics of the matrix-vector product for
performing the summation; the f vector collects the function nodal
values, whereas the N (ξ, η) weigth function row matrix collects their
influence coefficient at the provided (ξ, η) location.

The general planar quadrilateral domain. The interpolation func-
tions introduced above for the natural quadrilateral may be profitably
employed in defining a coordinate mapping between a general quadran-
gular domain – see Fig. 7a – and its reference counterpart, see Figures
6 or 7b.

In particular, we first define the ξ i 7→ x i coordinate mapping for
the four vertices22 alone, where ξ, η are the reference (or natural, or
elementary) coordinates and x, y are their physical counterpart.

Then, a mapping for the inner points may be derived by interpola-
tion, namely

x
(
ξ
)

= m
(
ξ
)

=
4∑
i=1

Ni

(
ξ
)

x i, (45)

or, by expliciting the m ≡ x components,

m
(
ξ
)

=

[
x(ξ, η)
y(ξ, η)

]
21The relevance of such partial derivative orders will appear clearer to the reader

once the strain field will have been derived in paragraph XXX.
22The condensed notation ξ i ≡ (ξi, ηi), x i ≡ (xi, yi) for coordinate vectors is

employed.
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N2(ξ, η)

ξ

η

x

y

[z]

n1

n2

n3

n4

C

dAxy

C

P

dξ

dη

ξ

η

n1 n2

n3n4

1.0

(a)

(b)

P

ξP

ηP

P ≡ (ξ, η)

P ≡ (xP (ξ, η), yP (ξ, η) [, zP (ξ, η)])

x2

y2

Figure 7: Quadrilateral general domain, (a), and its reference counter-
part (b). If the general quadrangle is defined within a spatial environ-
ment, and not as a figure lying on the xy plane, limited zi offsets are
allowed at nodes with respect to such plane, which are not considered
in Figure.
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with

x(ξ, η) =
4∑
i=1

Ni(ξ, η)xi y(ξ, η) =
4∑
i=1

Ni(ξ, η)yi.

In the employed notation, the parametric dependence of the m (ξ, η)
mapping on the nodal coordinates is not explicit, but clearly unavoid-
able; the complete notation m (ξ, η; x i) might be alternatively em-
ployed, where x i is a placeholder for the physical coordinates of each
node.

The availability of an inverse m−1 : x 7→ ξ mapping is not
granted; in particular, a closed form representation for such inverse
is not generally available23.

In the absence of an handy inverse mapping function, it is conve-
nient to reinstate the interpolation procedure obtained for the natural
domain, i.e.

f(ξ, η)
def
=
∑
i

Ni(ξ, η)fi (46)

The four fi nodal values are interpolated based on the natural ξ, η
coordinates of an inner P point, and not as a function of its physical
x, y coordinates, that are never promoted to the independent variable
role.

The interpolation scheme behind the m mapping – and the map-
ping itself – behaves linearly along η =const. and ξ =const. one di-
mensional subdomains, and in particular along the quadrangle edges24;
the inverse mapping m−1 exists and it is a linear function25 along the

23Inverse relations are derived in [5], which however are case-defined and based on
a selection table; for a given x̄ physical point, however, Newton-Raphson iterations
rapidly converge to the ξ̄ = m−1 ( x̄ ) solution if the centroid is chosen for algorithm
initialization, see Section XXX

24see paragraph XXX
25A constructive proof may be defined for each edge as follows. We consider a

generic Q point along such edge whose physical coordinates are (xQ, yQ). Of the
two natural coordinates of Q, one is trivial to be derived since its value is constant
along the edge. The other, for which we employ the λ placeholder symbol, may be
defined through the expression

λ = 2
(xQ − xi)(xj − xi) + (yQ − yi)(yj − yi)

(xj − xi)2 + (yj − yi)2
− 1,

where i,j are the two subdomain endpoints at which λ equates −1 and +1, respec-
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image of those line segments on the physical plane, under the further
condition that its length is nonzero26. Being a composition of linear
functions, the interpolation function f( m−1(x, y)) is also linear along
the aforementioned subdomains, and in particular along the quadran-
gle edges.

The directional derivatives of f with respect to x or y are obtained
based the indirect relation[

∂f
∂ξ
∂f
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
︸ ︷︷ ︸
J>(ξ,η; x i)

[
∂f
∂x
∂f
∂y

]
(47)

.
The function derivatives with respect to ξ, η are obtained as[

∂f
∂ξ
∂f
∂η

]
=
∑
i

[
∂Ni
∂ξ
∂Ni
∂η

]
fi. (48)

The transposed Jacobian matrix of the mapping function that appears
in 47 is

J >(ξ, η) =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(49)

=
∑
i

([
∂Ni
∂ξ 0
∂Ni
∂η 0

]
xi +

[
0 ∂Ni

∂ξ

0 ∂Ni
∂η

]
yi

)
(50)

If the latter matrix is assumed nonsingular – condition, this, that
pairs the bijective nature of the m mapping, equation 47 may be in-

tively, and (xi, yi), (xj , yj) the associated physical coordinates. A similar function
may be defined for any segment for which either ξ or η is constant, and not only for
the quadrangle edges. Please note that the above inverse mapping formula is not
applicable iif the segment physical length at the denominator is zero.

26The case exists of an edge whose endpoints are superposed, i.e. the edge col-
lapses to a point.
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verted, thus leading to the form[
∂f
∂x
∂f
∂y

]
=
(

J >
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]
...
fi
...

 (51)

=
(

J >
)−1

[
∂N
∂ξ
∂N
∂η

]
︸ ︷︷ ︸

L (ξ,η; x i), or just L (ξ,η)

f (52)

where the inner mechanics of the matrix-vector product are appointed
for the Eq. 48 summation; the differential operator L (ξ, η; x i) – or
just L (ξ, η) if, again, we disregard its parametric dependence on the
nodal coordinates – is also defined that extract the x, y directional
derivatives of the interpolation function from its nodal values.

The general spatial quadrilateral domain. TODO.

0.2.2 Gaussian quadrature rules for some relevant do-
mains.

Reference one dimensional domain. The gaussian quadrature
rule for approximating the definite integral of a f(ξ) function over
the [−1, 1] reference interval is constructed as the customary weighted
sum of internal function samples, namely∫ 1

−1
f(ξ)dξ ≈

n∑
i=1

f(ξi)wi; (53)

Its peculiarity is to employ location-weight pairs (ξi, wi) that are
optimal with respect to the polynomial class of functions. Nevertheless,
such choice has revealed itself to be robust enough for for a more general
employment.

Let’s consider a m-th order polynomial

p(ξ)
def
= amξ

m + am−1ξ
m−1 + . . .+ a1ξ + a0

whose exact integral is∫ 1

−1
p(ξ)dξ =

m∑
j=0

(−1)j + 1

j + 1
aj
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The integration residual between the exact definite integral and the
weighted sample sum is defined as

r (aj , (ξi, wi))
def
=

n∑
i=1

p(ξi)wi −
∫ 1

−1
p(ξ)dξ (54)

The optimality condition is stated as follows: the quadrature rule
involving n sample points (ξi, wi), i = 1 . . . n is optimal for the m-
th order polynomial if a) the integration residual is null for general
aj values , and b) such condition does not hold for any lower-order
sampling rule.

Once observed that the zero residual requirement is satisfied by any
sampling rule if the polynomial aj coefficients are all null, condition a)
may be enforced by imposing that such zero residual value remains
constant with varying aj terms, i.e.{

∂r (aj , (ξi, wi))

∂aj
= 0, j = 0 . . .m (55)

A system of m + 1 polynomial equations of degree27 m + 1 is hence
obtained in the 2n (ξi, wi) unknowns; in the assumed absence of redun-
dant equations, solutions do not exist if the constraints outnumber the
unknowns, i.e. m > 2n − 1. Limiting our discussion to the threshold
condition m = 2n− 1, an attentive algebraic manipulation of Eqns. 55
may be performed in order to extract the (ξi, wi) solutions, which are
unique apart from the pair permutations28.

27the (m+ 1)-th order wmξ
m term appears in equations

28In this note, location-weight pairs are obtained for the gaussian quadrature
rule of order n = 2, aiming at illustrating the general procedure. The general
m = 2n− 1 = 3rd order polynomial is stated in the form

p(ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0,

∫ 1

−1

p(ξ)dξ =
2

3
a2 + 2a0,

whereas the integral residual is

r = a3
(
w1ξ

3
1 + w2ξ

3
2

)
+a2

(
w1ξ

2
1 + w2ξ

2
2 −

2

3

)
+a1 (w1ξ1 + w2ξ2)+a0 (w1 + w2 − 2)

Eqns 55 may be derived as
0 = ∂r

∂a3
= w1ξ

3
1 + w2ξ

3
2 (e1)

0 = ∂r
∂a2

= w1ξ
2
1 + w2ξ

2
2 − 2

3
(e2)

0 = ∂r
∂a1

= w1ξ1 + w2ξ2 (e3)

0 = ∂r
∂a0

= w1 + w2 − 2 (e4)
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n ξi wi

1 0 2

2 ± 1√
3

1

3
0 8

9

±
√

3
5

5
9

4
±
√

3
7 − 2

7

√
6
5

18+
√

30
36

±
√

3
7 + 2

7

√
6
5

18−
√

30
36

Table 1: Integration points for the lower order gaussian quadrature
rules.

Eqns. 55 solutions are reported in Table 1 for quadrature rules with
up to n = 4 sample points29.

It is noted that the integration points are symmetrically distributed
with respect to the origin, and that the function is never sampled at
the {−1, 1} extremal points.

General one dimensional domain. The extension of the one di-
mensional quadrature rule from the reference domain [−1, 1] to a gen-
eral [a, b] domain is pretty straightforward, requiring just a change of
integration variable – i.e. a mapping function x = m(ξ) s.t. a = m(−1)
and b = m(1) – to obtain the following∫ b

a
g(x)dx =

∫ 1

−1
g (m(ξ))

dm

dξ
dξ ≈

n∑
i=1

g (m(ξi))
dm

dξ

∣∣∣∣
ξ=ξi

wi. (56)

Such a mapping function may be conveniently defined along the same
lines as the weight (or shape) function based interpolation, thus ob-

which are independent of the aj coefficients.
By composing

(
e1 − ξ21e3

)
/(w2ξ2) it is obtained that ξ22 = ξ21 ; e2 may then be

written as (w1 + w2)ξ21 = 2/3, and then as 2ξ21 = 2/3, according to e4. It derives
that ξ1,2 = ±1/

√
3. Due to the opposite nature of the roots, e3 implies w2 = w1,

relation, this, that turns e4 into 2w1 = 2w2 = 2, and hence w1,2 = 1 .
29see https://pomax.github.io/bezierinfo/legendre-gauss.html for higher

order gaussian quadrature rule sample points.
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taining

m(x) =

(
1− ξ

2

)
︸ ︷︷ ︸

N1

a+

(
1 + ξ

2

)
︸ ︷︷ ︸

N2

b.

The first order derivative may be evaluated as

dm

dξ
=
dN1

dξ
a+

dN2

dξ
b =

b− a
2

and it is constant along the interval, so that it may be collected outside
of the summation, thus leading to∫ b

a
g(x)dx ≈ b− a

2

n∑
i=1

g

(
b+ a

2
+
b− a

2
ξi

)
wi. (57)

Reference quadrangular domain. A quadrature rule for the ref-
erence quadrangular domain of Figure 6a may be derived by nesting
the quadrature rule defined for the reference interval, see Eqn. 53, thus
obtaining ∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

p∑
i=1

q∑
j=1

f (ξi, ηj)wiwj (58)

where (ξi, wi) and (ηj , wj) are the coordinate-weight pairs of the two
quadrature rules of p and q order, respectively, employed for spanning
the two coordinate axes. The equivalent notation∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

pq∑
l=1

f
(
ξ l
)
wl (59)

emphasises the characteristic nature of the pq point/weight pairs for
the domain and for the quadrature rule employed; a general integer
bijection30 {1 . . . pq} ↔ {1 . . . p} × {1 . . . q}, l ↔ (i, j) may be utilized

30e.g.

{i− 1; j − 1} = (l − 1) mod (p, q), l − 1 = (j − 1)q + (i− 1)

where the operator

{an; . . . ; a3; a2; a1} = mmod (bn, . . . , b3, b2, b1)

consists in the extraction of the n least significant ai digits of a mixed radix repre-
sentation of the integer m with respect to the sequence of bi bases, with i = 1 . . . n.
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to formally derive the two-dimensional quadrature rule pairs

ξ l = (ξi, ηj) , wl = wiwj , l = 1 . . . pq (60)

from their uniaxial counterparts.

General quadrangular domain. The rectangular infinitesimal area
dAξη = dξdη in the neighborhood of a ξP , ηP location, see Figure 7b,
is mapped to the dAxy quadrangle of Figure 7a, which is composed by
the two triangular areas

dAxy =
1

2!

∣∣∣∣∣∣
1 x (ξP , ηP ) y (ξP , ηP )
1 x (ξP + dξ, ηP ) y (ξP + dξ, ηP )
1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)

∣∣∣∣∣∣+
+

1

2!

∣∣∣∣∣∣
1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)
1 x (ξP , ηP + dη) y (ξP , ηP + dη)
1 x (ξP , ηP ) y (ξP , ηP )

∣∣∣∣∣∣ . (61)

The determinant formula for the area of a triangle, shown below along
with its n-dimensional symplex hypervolume generalization,

A =
1

2!

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ , H =
1

n!

∣∣∣∣∣∣∣∣∣
1 x 1

1 x 2
...

...
1 x n+1

∣∣∣∣∣∣∣∣∣ (62)

has been employed above.
By operating a local multivariate linearization of the 61 matrix

terms, the relation

dAxy ≈
1

2!

∣∣∣∣∣∣
1 x y
1 x+ x,ξdξ y + y,ξdξ
1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη

∣∣∣∣∣∣+
+

1

2!

∣∣∣∣∣∣
1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη
1 x+ x,ηdη y + y,ηdη
1 x y

∣∣∣∣∣∣
is obtained, where x, y, x,ξ, x,η, y,ξ, and y,η are the x, y functions and
their first order partial derivatives, evaluated at the (ξP , ηP ) point;
infinitesimal terms of order higher than dξ, dη are neglected.
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After some matrix manipulations31, the following expression is ob-
tained

dAxy =

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣︸ ︷︷ ︸
|JT(ξP ,ηP ; x , y )|

dAξη (63)

that equates the ratio of the mapped and of the reference areas to the
determinant of the transformation (transpose) Jacobian matrix32.

After the preparatory passages above, we obtain∫∫
Axy

g(x, y)dAxy =

∫ 1

−1

∫ 1

−1
g (x (ξ, η) , y (ξ, η)) |J(ξ, η)| dξdη, (64)

thus reducing the quadrature over a general domain to its reference
domain counterpart, which has been discussed in the paragraph above.

Based on Eqn. 59, the quadrature rule∫∫
Axy

g( x )dAxy ≈
pq∑
l=1

g
(

x
(
ξ l
)) ∣∣J( ξ l)

∣∣wl (65)

31In the first determinant, the second row is subtracted from the third one, and the
first row is subtracted from the second one. The dξ, dη factors are then collected
from the second and the third row respectively. In the second determinant, the
second row is subtracted from the first one, and the third row is subtracted from
the second one. The dξ, dη factors are then collected from the first and the second
row respectively. We now have

dAxy =
1

2

∣∣∣∣∣∣
1 x y
0 x,ξ y,ξ
0 x,η y,η

∣∣∣∣∣∣ dξdη +
1

2

∣∣∣∣∣∣
0 x,ξ y,ξ
0 x,η y,η
1 x y

∣∣∣∣∣∣ dξdη
The first column of both the determinants contains a single, unitary, nonzero term,
whose row and column indexes are even once added up; the determinants of the
associated complementary minors hence equate their whole matrix counterpart. We
hence obtain

dAxy =
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη +
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη
from which Eq.63 may be straightforwardly derived.

32The Jacobian matrix for a general ξ 7→ x mapping is in fact defined according
to

[J( ξ P )]ij
def
=

∂xi
∂ξj

∣∣∣∣
ξ= ξ P

i, j = 1 . . . n

being i the generic matrix term row index, and j the column index
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is derived, stating that the definite integral of a g integrand over a
quadrangular domain pertaining to the physical x, y plane (x, y are di-
mensional quantities, namely lengths) may be approximated as follows:

1. a reference-to-physical domain mapping is defined, that is based
on the vertex physical coordinate interpolation;

2. the function is sampled at the physical locations that are the
images of the Gaussian integration points previously obtained
for the reference domain;

3. a weighted sum of the collected samples is performed, where the
weights consist in the product of i) the adimensional wl Gauss
point weight (suitable for integrating on the reference domain),
and ii) a dimensional area scaling term, that equals the determi-
nant of the transformation Jacobian matrix, locally evaluated at
the Gauss points.
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0.3 The bilinear isoparametric shear-deformable
shell element

This is a four-node, thick-shell element with global displace-
ments and rotations as degrees of freedom. Bilinear inter-
polation is used for the coordinates, displacements and the
rotations. The membrane strains are obtained from the
displacement field; the curvatures from the rotation field.
The transverse shear strains are calculated at the middle
of the edges and interpolated to the integration points. In
this way, a very efficient and simple element is obtained
which exhibits correct behavior in the limiting case of thin
shells. The element can be used in curved shell analysis
as well as in the analysis of complicated plate structures.
For the latter case, the element is easy to use since connec-
tions between intersecting plates can be modeled without
tying. Due to its simple formulation when compared to the
standard higher order shell elements, it is less expensive
and, therefore, very attractive in nonlinear analysis. The
element is not very sensitive to distortion, particularly if
the corner nodes lie in the same plane. All constitutive
relations can be used with this element.

— MSC.Marc 2013.1 Documentation, vol. B, Element library.

0.3.1 Element geometry

Once introduced the required algebraic paraphernalia, the definition of
a quadrilateral bilinear isoparametric shear-deformable shell element is
straightforward.

The quadrilateral element geometry is defined by the position in
space of its four vertices, which constitute the set of nodal points, or
nodes, i.e. the set of locations at which field components are primarily,
parametrically, defined; interpolation is employed in deriving the field
values elsewhere.

A suitable interpolation scheme, named bilinear, has been intro-
duced in paragraph 0.2.1; the related functions depend on the normal-
ized coordinate pair ξ, η ∈ [−1, 1] that spans the elementary quadrilat-
eral of Figure 6.
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A global reference system OXY Z is employed for concurrently deal-
ing with multiple elements (i.e. at a whole model scale); a more conve-
nient, local Cxyz reference system, z being locally normal to the shell,
is used when a single element is under scrutiny – e.g. in the current
paragraph.

Nodal coordinates define the element initial, undeformed, geome-
try33, or, alternatively, the portion of thin-walled body reference sur-
face that pertains to the current element; physical, spatial coordinates
for each other element point may be retrieved by interpolation based
on the associated pair of natural ξ, η coordinates, namelyX(ξ, η)

Y (ξ, η)
Z(ξ, η)

 =
n∑
i=1

Ni(ξ, η)

Xi

Yi
Zi

 ,
x(ξ, η)
y(ξ, η)
z(ξ, η)

 =
n∑
i=1

Ni(ξ, η)

xiyi
zi

 (66)

with reference to both the global and the local systems.
In particular, the C centroid is the image within the physical space

of the ξ = 0, η = 0 natural coordinate system origin.
The in-plane orientation of the local Cxyz reference system is some-

what arbitrary and implementation-specific; the MSC.Marc approach
is used as an example, and it is described in the following. The in-plane
x, y axes are tentatively defined34 based on the physical directions that
are associated with the ξ, η natural axes, i.e. the oriented segments
spanning a) from the midpoint of the n4-n1 edge to the midpoint of
the n2-n3 edge, and b) from the midpoint of the n1-n2 edge to the
midpoint of the n3-n4 edge, respectively; however, these two tentative
axes are not mutually orthogonal in general. The mutual Cxy angle is
then amended by rotating those interim axes with respect to a third,
binormal axis Cz, while preserving their initial bisectrix.

33They are however continuosly updated within most common nonlinear analysis
frameworks, where initial usually refers to the last computed, aka previous step of
an iterative scheme.

34The MSC.Marc element library documentation defines them as a normalized
form of the (

∂X

∂ξ
,
∂Y

∂ξ
,
∂Z

∂ξ
,

)∣∣∣∣
ξ=0,η=0

,

(
∂X

∂η
,
∂Y

∂η
,
∂Z

∂η
,

)∣∣∣∣
ξ=0,η=0

,

vectors, which are evaluated at the centroid. The two definitions may be proved
equivalent based on the bilinear interpolation properties.
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The resulting quadrilateral shell element has limited capabilities of
representing a curve surface; it is in fact flat, apart from a (suggest-
edly limited) anticlastic curvature of the element diagonals, which is
associated to the quadratic ξη term of the interpolation functions. It
is e.g. not capable of representing a single curvature surface.

The curve nature of a thin-walled body midsurface may thus be re-
produced by recurring to a tessellation of essentially flat, but mutually
angled elements.

0.3.2 Displacement and rotation fields

The element degrees of freedom consist in the displacements and the
rotations of the four quadrilateral vertices, i.e. nodes.

By interpolating the nodal values, displacement and rotation func-
tions may be derived along the element asu(ξ, η)

v(ξ, η)
w(ξ, η)

 =

4∑
i=1

Ni(ξ, η)

uivi
wi

 (67)

θ(ξ, η)
φ(ξ, η)
ψ(ξ, η)

 =
4∑
i=1

Ni(ξ, η)

θiφi
ψi

 (68)

with i = 1 . . . 4 cycling along the element nodes. If we collect the
element nodal degree of freedom (dof)s within the six column vectors

u =


...
ui
...

 v =


...
vi
...

 w =


...
wi
...



θ =


...
θi
...

 φ =


...
φi
...

 ψ =


...
ψi
...


we may resort to compact notations in the form

u(ξ, η) = N (ξ, η) u v(ξ, η) = N (ξ, η) v

et cetera.
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Those column vectors are in turn stacked to form the cumulative

d > =
[

u > v > w > θ > φ > ψ >
]

(69)

dof column vector for the title element.
The ψ vector associated with the drilling degree of freedom – i.e.

the rotation with respect to the normal z axis – is not omitted, although
its contribution to the element strain energy deserves some discussion,
see the dedicated paragraph below.

0.3.3 Strains

By recalling Eqn. 51, we have e.g.

[∂u
∂x
∂u
∂y

]
=
(

J ′
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]
︸ ︷︷ ︸

L (ξ,η; x i) or just L (ξ,η)


...
ui
...

 (70)

for the x-oriented displacement component; the differential operator
L (ξ, η; x i), which extracts the x, y directional derivatives from the
nodal values of a given field component, is employed.

A block defined Q(ξ, η) matrix is thus obtained that cumulatively
relates the in-plane displacement component derivatives to the associ-
ated nodal values

∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y

 =

[
L (ξ, η) 0

0 L (ξ, η)

]
︸ ︷︷ ︸

Q (ξ,η)

[
u
v

]
(71)

An equivalent relation may then be obtained for the rotation field
∂θ
∂x
∂θ
∂y
∂φ
∂x
∂φ
∂y

 = Q (ξ, η)

[
θ
φ

]
(72)

By making use of two auxiliary matrices H ′ and H ′′ that collect
the {0,±1} coefficients in Eqns. 10 and 11, we obtain that the ip
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strain components at the reference surface, and the curvatures equate
respectively exey

gxy

 =

+1 0 0 0
0 0 0 +1
0 +1 +1 0


︸ ︷︷ ︸

H ′


∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y

 = H ′Q (ξ, η)

[
u
v

]
(73)

 κxκy
κxy

 =

 0 0 +1 0
0 −1 0 0
−1 0 0 +1


︸ ︷︷ ︸

H ′′


∂θ
∂x
∂θ
∂y
∂φ
∂x
∂φ
∂y

 = H ′′Q (ξ, η)

[
θ
φ

]
(74)

or, by referring to the whole set of nodal dofs,

e =
[

H ′Q (ξ, η) 0 0 0 0
]

︸ ︷︷ ︸
B e(ξ,η)

d (75)

κ =
[

0 0 0 H ′′Q (ξ, η) 0
]

︸ ︷︷ ︸
B κ(ξ,η)

d . (76)

The B e and B κ matrices are block-defined by appending to the 3x8
blocks introduced in Eqn. 73 and 74, respectively, a suitable set of 3x3
null block placeholders.

The ip strain components at a generico ξ, η, z point along the ele-
ment thickness may then be derived according to Eqn. 12 as a (linear)
function of the nodal degrees of freedom

ε (ξ, η, z) =
(

B e(ξ, η) + zB κ(ξ, η)
)

d ; (77)

the oop shear strain components, as defined in Eqns. 4 and 5, become
instead [

γ̄zx
γ̄yz

]
= L (ξ, η) w +

[
0 + N (ξ, η)

−N (ξ, η) 0

] [
θ
φ

]
, (78)

and thus, by employing a notation consistent with ??,[
γ̄zx
γ̄yz

]
=

[
0 0 L (ξ, η)

0
−N (ξ, η)

N (ξ, η)

0
0

]
︸ ︷︷ ︸

B γ(ξ,η)

d (79)
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where the transformation matrix that derives the out-of-plane, inter-
laminar strains from the nodal degrees of freedom vector is constituted
by five 2× 4 blocks.
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0.3.4 Stresses

In general, material constitutive laws are employed in deriving stress
components from their strain counterpart.

In the case of a shell element, the plane stress relations discussed in
Paragraph 0.1, see Eqns. 13, may be employed in deriving the pointwise
ip stress components from the associated strains.

Also, the plate constitutive laws reported as Eqns. 19 may be
employed in deriving the tt force and moment ip stress resultants from
the generalized strains obtained in Eqns. 75, 76. The oop shear stress
resultants may be derived from the associated Eqns. 79 generalized
strains by resorting to Eq. 24.

0.3.5 The element stiffness matrix.

In this paragraph, the elastic behaviour of the finite element under
scrutiny is derived.

The element is considered in its deformed configuration, being

d > =
[

u > v > w > θ > φ > ψ >
]

(80)

the dof vector associated with such condition.
A virtual displacement field perturbs such deformed configuration;

as usual, those virtual displacements are infinitesimal, they do occur
while time is held constant, and, being otherwise arbitrary, they respect
the existing kinematic constraints.

Whilst, in fact, no external constrains are applied to the element,
the motion of the pertaining material points is prescribed based on a)
the assumed plate kinematics, and b) on the bilinear, isoparametric
interpolation laws that propagate the generalized nodal displacements
δd towards the quadrilateral’s interior.

Since the element is supposed to elastically react to such d de-
formed configuration, a set of external actions

G > =
[

U > V > W > Θ > Φ > Ψ >
]

(81)

is applied at nodes35 – one each dof, that equilibrate the stretched
element reactions.

35There is no lack of generality in assuming the equilibrating external actions
applied at dofs only, as discussed in Par. XXX below.
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The nature of each G generalized force component is defined based
on the nature of the associated generalized displacement, such that the
overall virtual work they perform on any δd motion is

δΥe = δd >G . (82)

Let’s now consider the internal virtual work produced by the same
δd displacements.

The ip stress components that are induced by the d generalized
displacements equal

σ = D (z)
(

B e(ξ, η) + B κ(ξ, η)z
)

d (83)

according to the previous paragraphs,and they perform [volumic den-
sity of] internal work on the

δε =
(

B e(ξ, η) + B κ(ξ, η)z
)
δd (84)

virtual elongations.
Similar considerations may be assessed with reference to the plate

theory framework; in particular, the internal action stress and moment
resultants may be derived from the element dof as

q =
(

a B e(ξ, η) + b B κ(ξ, η)
)

d (85)

m =
(

b >B e(ξ, η) + c B κ(ξ, η)
)

d , (86)

and they perform [surficial density of] virtual work on the virtual vari-
ation of the generalized strain components

δe = B e(ξ, η)δd (87)

δκ = B κ(ξ, η)δd , (88)

The associated internal virtual work may be derived by integra-
tion along the element volume, i.e. along the thickness, and along the
quadrilateral portion of reference surface that pertains to the element.
We thus obtain a first contribution to the overall internal virtual work

δΥ†i =

∫∫
A

∫
h
δε > σ dzdA

=

∫∫
A

∫
h

((
B e + B κz

)
δd
)>

D
(

B e + B κz
)

d dzdA

= δd >
[∫∫

A

∫
h

(
B >e + B >κz

)
D
(

B e + B κz
)
dzdA

]
d

= δd >K † d , (89)
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which may equivalently be expressed based on the plate/laminate con-
stitutive matrix minors as

δΥ†i =

∫∫
A

(
δe > q + δκ >m

)
dA

= δd >
[∫∫

A

(
B >e

(
a B e + b B κ

)
+ B >κ

(
b B e + c B κ

))
dA
]

d

= δd >K σ d , (90)

since we recall that{
a , b , c

}
=

∫
h

D
{

1, z, z2
}
dz,

and that the B {e,κ} matrices are constant in z.
Integration along i) the reference surface, and ii) along the thickness

is numerically performed through potentially distinct quadrature rules;
in particular, contributions are collected along the surface according
to the two points per axis (four points overall) Gaussian quadrature
formula introduced in Par. 0.2.2, whilst a (composite) Simpson rule is
applied in z, being each material layer sampled at its outer and middle
points. In general, any volume integral along the element, i.e.∫∫∫

Ω
g(ξ, η, x, y, z)dΩ = (91)

=

∫ +1

−1

∫ +1

−1

∫ +h
2

+o

−h
2

+o
g(ξ, η, x(ξ, η), y(ξ, η), z)dz

∣∣ J (ξ, η)
∣∣ dξdη,

where g is a generic function of the isoparametric or physical coordi-
nates, will be numerically performed according to such scheme.

the outer integrals in the isoparametric coordinates (ξ, η) are eval-
uated according to the usual two points per axis gaussian quadrature
rule, whereas a [composite] Simpson rule is employed along the tt
coordinate z.

The two points per axis quadrature rule is the lowest order rule that
returns an exact integral evaluation in the case of distortion-free36 ele-
ments, i.e. planar elements whose peculiar (parallelogram) shape also

36Many distinct definitions are associated to the element distortion concept, being
the one reported relevant for the specific dissertation passage.
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determines a linear (vs. bilinear) isoparametric mapping. Since the
associated Jacobian matrix is constant with respect to ξ, η, the L ma-
trix defined in 70 linearly varies with such isoparametric coordinates,
and so do the B e, B κ matrices. The integrand of Eqn. 89 is thus a
quadratic function of the ξ, η integration variables, as the Jacobian ma-
trix determinant that scales the physical and the natural infinitesimal
areas, see Eq. 63, is also constant.

A second contribution to the internal virtual work, which is due
to the out-of-plane shear components, may be obtained with similar
considerations based on Eqns. 79 and 23; such contribution may be
cast as

δΥ‡i =

∫∫
A
δγ >z q zdA

= δd >
[
h

∫∫
A

B >γ Γ B γdA
]

d

= δd >K γ d . (92)

The overall internal work is thus

δΥi = δΥ†i + δΥ‡i
= δd >

(
K σ + K γ

)
d

= δd >K d . (93)

The principle of virtual works states that the external and the in-
ternal virtual works are equal for a general virtual displacement δd ,
namely

δd >G = δΥe = δΥi = δd >K d , ∀δd , (94)

if and only if the applied external actions G are in equilibrium with
the elastic reactions due to the displacements d ; the following equality
thus holds

G = K d ; (95)

the K stiffness matrix relates a deformed element configuration, which
is defined based on the generalized displacement vector d , with the G
generalized forces that have to be applied at the element nodes to keep
the element in such a stretched state.
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0.3.6 The shear locking flaw

Figures 8 rationalize the shear locking phenomenon that plagues the
plain bilinear isoparametric element in its mimicking the pure bending
deformation modes; the case of an in-plane constant curvature bending
is presented, but an analogous behaviour is observed in the out-of-plane
bending case.

In Figure 8a, a rectangular37 planar element is presented, whose
geometry is defined by the a/b side length ratio, being the thickness
not relevant for the treatise. The material is assumed linearly elastic,
homogeneous and isotropic.

In Figure 8b, the exact solution for an equivalent prismatic body
subject to pure bending is presented in terms of strain components and
strain energy area density, as a function of the imposed angular dis-
placement of the ends. The first Castigliano theorem may be employed
in deriving the applied bending moment Cb, as predicted by the exact
solution.

In Figure 8c, the same angular displacement is imposed to the flanks
of a four-noded, isoparametric element of the kind described in the
present treatise. The trapezoidal (or keystoning) deformation shown
in Figure is the best-effort exact solution mimicking we may obtain
with a single element.

In the absence of oop displacements and ip rotations, a pure mem-
brane deformation is obtained; the drilling dof is not considered.
Strain components are derived according to the proposed formulation,
and reported along the strain energy area density; apart from the εx
longitudinal strain, inconsistencies are observed with respect to the ex-
act solution. Again, the first Castigliano theorem may be employed
in deriving the bending moment Ciso4, as predicted by the element
formulation.

In Figure 8d, the exact solution is subtracted from its finite element
counterpart, thus revealing a spurious residual strain field, whose most
notable characteristic is a generally nonzero ip shear strain component
γxy. Such a component is constant in the transverse to bending direc-
tion y, whereas it linearly varies in the axial direction x from +α/2 to
−α/2, being null at the x = 0 (or ξ = 0) locus alone.

Such a spurious shear component contributes to the element strain

37vs. generally quadrangular, for the sake of treatise simplicity
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α
2

α
2

εy < 0

εy > 0

α
2

α
2

α
2

-a +a

-b

+b

x

y

εx = −αy
2a

εy = εz = ν αy2a

γxy = 0

exact solution,
pure in-plane bending

εx = −αy
2a

εy = 0, εz =
ν

1−ν
αy
2a

γxy = −αx
2a

four noded, isop. element,
in-plane trapezoidal mode

γxy = α
2 γxy = 0 γxy = −α

2

Cb

Ciso4

Ciso4

Cb
=

1+ 1−ν
2 ( ab )

2

1−ν2

≈ 1.48 if ν = 0.3, ab = 1

α
2

u =
(
1 + ν2

1−ν2

)
Eα2y2

8a2 + Gα2x2

8a2

u = α2Ey2

8a2

undeformed domain
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Figure 8: Rationalization of the [ip] shear locking phenomenon, in the
case of a rectangular plate element. An analogous construction may
be derived for the oop counterpart.44
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energy thus stiffening the element with respect to the exact solution;
the ratio between the bending moments to be applied to induce a given
curvature is also reported, which reveals that a ≈ +48% bogus stiff-
ening is to be expected for the geometrically regular element, and the
commonest structural materials.

In particular the error grows with the a/b ratio, and it becomes
consistent with that due the sole σy = 0 vs. εy = 0 incongruity (≈
+9.8%) in the limit case of a/b→ 0.

If such a spurious stiffening is tolerable for the in-plane bending –
which is a secondary loadcase for a thin walled body, the analogous
results obtained in the more significant transverse deflection (out-of-
plane) bending case makes the element under scrutiny not compliant
with the Irons patch test38 for plates – i.e., some error due to discretiza-
tion is noticed even in the uniform curvature bending loadcase.

Many workarounds are proposed in literature, see e.g. the chapters
devoted to the topic in [8]; in the following, two emending techniques
are presented, which are (apparently39) employed for the MSC.Marc
Element 75.

A solution for the oop plate bending

An ingenious sampling and interpolation technique has been developed
in [9] that overcomes the locking effect due to the spurious transverse
shear strain that develops when the element is subject to out-of-plane
bending. Such technique, however, does not correct the element be-
haviour with respect to in-plane bending.

Eqn. 79 is employed in obtaining the tranverse shear strain compo-
nents γ̄zx and γ̄yz at the edge midpoints; the edge-aligned component

γ̄zîj is derived by projection along the îj direction, whereas the orthog-
onal component is neglected.

Figure 9a evidences that a null spurious tranverse shear is measured
at the midpoint of the 12 and of the 41 edges when a constant, out-of-
plane curvature is locally enforced that develops along the 1̂2 and the

38in summary: a finite element formulation passes the patch test if an arbitrarily
coarse discretization still exactly forecasts any uniform [generalized] strain solution,
given a conformable set of boundary conditions; see [6], and [7] for some further
developments.

39Documentation is not as detailed, and the source code is not available; some
literature search and some reverse engineering hints for the usage of such techniques.
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4̂1 directions, respectively. Such property holds for all edges.
In Figure 9b, a differential out-of-plane displacement is added to

the initial pure bending configuration of Fig. 9a, and in the absence
of further rotations at nodes; a proper (vs. spurious) transverse shear
strain field is thus induced in the element, that the sampling scheme
must properly evaluate.

The edge aligned, transverse shear components sampled at the side
midpoints are then assigned to the whole edge, and in particular to
both its extremal nodes.

As shown in Figure 9b (and in the related enlarged view), two
independent transverse shear components γ̄z1̂2 and γ̄z4̂1 are associated
to the n1 node, which is taken as an example.

A vector is uniquely determined, whose projections on the 1̂2 and
4̂1 directions coincide with the associated transverse shear components;
the components of such vector with respect to the x, y axes define the
γ̄zx,n1 and γ̄yz,n1 tranverse shear terms at the n1 node.

Such procedure is repeated for all the element vertices; the obtained
nodal values for the transverse shear components are then interpolated
to the element interior, according to the customary bilinear scheme.

Due to the peculiarity of the initial sampling points, the obtained
tranverse shear strain field is amended with respect to the spurious
contribution that previously led to the shear locking effect; the usual
quadrature scheme may now be employed.

Equation 79 still formalizes the passage from nodal dofs to the
out-of-plane shear field, since the procedure described in the present
paragraph may be easily cast in the form of a revised B γ matrix.

A solution for the ip plate bending, which also mitigates the
drilling mode quirks.

TODO.
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Figure 9: A transverse shear sampling technique employed in the four-
noded isoparametric element for preventing shear locking in the oop
plate bending.
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0.4 Mass matrix for the finite element

0.4.1 Energy consistent formulation for the mass matrix

The Ω volume of material associated to a finite element is consid-
ered, along with the local, physical reference system (x, y, z), and its
isoparametric counterpart that, for the quadrilateral plate element un-
der scrutiny, is embodied by the (ξ, η, z) triad.

The vector shape function array

S (ξ, η, z) =

. . . ũi(ξ, η, z) . . .
. . . ṽi(ξ, η, z) . . .
. . . w̃i(ξ, η, z) . . .

 (96)

is defined based on the elementary motions ũ i ≡ [ũi, ṽi, w̃i]
> induced

to the element material points by imposing a unit value to the i-th
degree of freedom di, while keeping the others fixed.

The displacement field is then defined as a linear combination of
the elementary motions above, where the d element dofs serve as
coefficients, namely

u (ξ, η, z) = S (ξ, η, z) d . (97)

Deriving with respect to time the equation above, the velocity field

u̇ (ξ, η, z) = S (ξ, η, z) ḋ (98)

is obtained as a function of the first variation in time of element dofs.
Expression 98 is simplified by the constant-in-time nature of S .

The kinetic energy contribution associated to the deformable ele-
ment material points may be integrated, thus obtaining

Ekin =
1

2

∫∫∫
Ω

u̇ > u̇ ρdΩ (99)

where ρ is the material mass density, that may vary across the domain.
By substituting the velocity field definition of Eq. 98 we obtain

Ekin =
1

2

∫∫∫
Ω

[
S ḋ

]> [
S ḋ

]
ρdΩ, (100)
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and finally

Ekin =
1

2
ḋ >
[∫∫∫

Ω
S > S ρdΩ

]
ḋ =

1

2
ḋ >M ḋ . (101)

The integral term that defines the M mass matrix is evaluated by
resorting to the same quadrature technique introduced for its stiffness
counterpart.

The actual nature of the mass matrix terms varies based on the
type of the dofs that are associated to the term row and column; in
particular, the diagonal terms that are related to displacements and
rotations are dimensionally consistent with a mass and a moment of
inertia, respectively.

The mass matrix quantifies the inertial response of the finite ele-
ment; according to its definition

M =

∫∫∫
Ω

S > S ρdΩ, (102)

it is merely a function of the material density, and of the kinematic laws
that constrain the motion of the material particles within the element.

If a set of external (generalized) forces G is applied to the element
dofs in the fictitious absence of elastic reactions, a purely inertial
response is expected. The ḋ vector defines the instantaneous first
derivative in time of the dofs (i.e. nodal translational and rotational
velocities); the instantaneous power supplied by the external forces is
then evaluated as ḋ >G , that induces an equal time derivative of the
kinetic energy, quantified as 40

ḋ >G =
dEkin

dt
=
d

dt

(
1

2
ḋ >M ḋ

)
=

1

2

(
d̈ >M ḋ + ḋ >M d̈

)
= ḋ >M d̈ .

40The symmetric matrix characterizing property

x > A y = y > A x ∀ x , y ∈ Rn

is used in deriving the last passage.
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Due to the general nature of ḋ , equality

G = M d̈ (103)

is implied, which points out the mass matrix role in transforming the
dof vector second derivative in time (i.e. nodal translational and ro-
tational accelerations) into the generalized force components that are
to be applied in order to sustain such variation of motion.

0.4.2 Lumped mass matrix formulation

In a few applications, a diagonal form for the mass matrix is preferred
at the expense of a) a strict adherence to energy consistency with regard
to rotational motions, and b) some arbitrariness in its definition.

The finite element volume is ideally partitioned into a set of influ-
ence domains, one each node. In the case of the four-noded quadrilat-
eral, material points whose ξ, η isoparametric coordinates fall within
the first, second, third and fourth quadrant are associated to nodes n3,
n4, n1 and n2, respectively; those distributed masses are then ideally
accumulated at the associated node.

A group of four concentrated nodal masses is thus defined, whose
motion is defined based on single translational dofs, and not on the
plurality of weighted contributions that induces the nonzero, nondiag-
onal terms at the consistent mass matrix.

This undue material accumulation at the element periphery pro-
duces a spurious increase of the moment of inertia, condition, this, that
may only be worsened if (positive) rotational inertias are introduced
at nodes.

Those nodal rotational inertias are however required in associating
a bounded angular acceleration to unbalanced nodal torques; solution
methods based on the mass matrix inversion, e.g. explicit dynamic
procedures, are precluded otherwise. Since there is no consensus on
the quantification those inertial terms, the reader is addressed to spe-
cialized literature.

The effect of this elemental overestimation on the rotational iner-
tia of the modeled structures decreases with mesh refinement, and it
vanishes for a theoretically vanishing element size.
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0.5 External forces

Energetically consistent external actions may be applied at the nodal
dofs, that may be interpreted as concentrated forces and moments;
their physical rationalization outside the discretized structure frame-
work – and in particular back to the underlying elastic continua theory
– is far from being trivial.

Surface tractions and volumetric loads are instead naturally tied
with the continuum formulation, and are usually employed in formal-
izing the load condition of structural components.

The present paragraph derives the equivalent nodal representation
of distributed actions acting on the domain of a single finite element;
the inverse relation provides a finite, distributed traction counterpart
to concentrated actions applied at the nodes of a discretized FE model.

The S set of elementary deformation modes that is introduced
in the context of the element mass matrix derivation, see Eqn. 96,
is employed to define a virtual displacement field within the element
domain based on the virtual variation δ d of its nodal dofs values, i.e.

δ u (ξ, η, z) = S (ξ, η, z)δ d , (104)

see also Eq. 97.
A volumetric external load is considered, whose components p =

[px, py, pz] are consistent with the S matrix reference system, i.e. the
local to the element, physical Cxyz one. If external load components
are defined in the context of a global reference system, straightforward
reference frame transformations are to be applied.

The virtual work performed by those distributed actions is first
integrated along the element domain, and then equalled to its nodal
counterpart δ d > F , thus leading to

δ d > F =

∫∫∫
Ω

(δ u )> p dΩ

=

∫∫∫
Ω

(
S δ d

)>
p dΩ

= δ d >
∫∫∫

Ω
S > p dΩ,

and finally to

F =

∫∫∫
Ω

S > p dΩ (105)
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due to the general nature of δ d .
In the case of the plate element under scrutiny, we recall that the

volume integral of Eq. 105 is numerically evaluated according to Eq.
91 quadrature scheme.

In general, the quadrature along the domain is performed according
to the methods introduced for deriving the element stiffness matrix. If
a surface or an edge load are supplied in place of the volumetric load
vector p , Eq. 105 integral may be adapted to span each loaded element
face, or edge.

In the case of low order isoparametric elements – e.g. the four-
noded quadrilateral shell element, an alternative, simplified procedure
for the consolidation of the distributed loads into nodal forces becomes
viable. According to such procedure, the element domain is partitioned
into influence volumes, one each node; the external load contributions
are then accumulated within each partition, and the resultant force
vector is applied to the associated node.

By moving such resultant force from the distribution center of grav-
ity (cog) to the corner node, momentum balance is naively disre-
garded; the induced error however decreases with the load field vari-
ance across the element, and hence with the element size. Such error
vanishes for uniform distributed loads.

In the presence of a better established, work consistent counterpart,
such simplified procedure is mostly employed to set a rule-of-thumb
equivalence between distributed and nodal loads; in particular, the
stress-singular nature of a set of nodal loads may be easily pointed out
if it is observed that a finite load resultant is applied to influence areas
that cumulatively vanish with vanishing element size.
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0.6 Joining elements into structures.

0.6.1 Displacement and rotation field continuity

Displacement and rotation fields are continuous at the isoparametric
quadrilateral inter-element interfaces; they are in fact continuous at
nodes since the associated nodal dofs are shared by adjacent elements,
and the field interpolations that occur within each quadrilateral domain
a) they both reduce to the same linear relation along the shared edge,
and b) they are performed in the absence of any contributions related
to unshared nodes or dofs.

A similar result does not hold for the [generalized] strain and stress
components, which are in general discontinuous across the element
boundaries; such a discontinuity – which vanishes with mesh refine-
ment except at singularities41 – constitutes an indicator of the fe dis-
cretization error.

0.6.2 Expressing the element stiffness matrix in terms
of global dofs

As seen in Par. 0.3.5, the stiffness matrix of each j-th element de-
fines the elastic relation between the associated generalized forces and
displacements, i.e.

G ej = K ej d ej (106)

where the dofs definition is local with respect to the element under
scrutiny.

In order to investigate the mutual interaction between elements
in a structure, a common set of global dofs is required; in particular,
generalized displacement dofs are defined at each l-th global node, i.e.,
for nodes interacting with the shell element formulation under scrutiny,

d gl =



ugl

vgl

wgl

θgl

ϕgl

ψgl

 . (107)

41i.e. at locations at which a singularity (or a discontinuity) of the exact solution
may be theoretically predicted
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The global reference system OXY Z is typically employed in project-
ing nodal vector components. However, each l-th global node may
be supplied with a specific reference system, whose unit vectors are
ı̂gl, ̂gl, k̂gl, thus permitting the employment of non uniformly aligned
(e.g. cylindrical) global reference systems.

Those nodal degrees of freedom may be collected in a global dofs
vector

d >g =
[

d >g1 d >g2 . . . d >gl . . . d >gn
]

(108)

that parametrically defines any deformed configuration of the structure.
Analogously, a global, external (generalized42) forces vector may be

defined, that assumes the form

F >g =
[

F >g1 F >g2 . . . F >gl . . . F >gn
]

; (109)

since single dof (or single-dof(!) constraint (spc)) and multi dof (or
multi-dof(!) constraint (mpc)) kinematic constraints43 are expected
to be applied to the structure dofs, the following vector of reaction
forces

R >g =
[

R >g1 R >g2 . . . R >gl . . . R >gn
]

(110)

is introduced. Many FE softwares – and MSC.Marc in particular – treat
external and internal constraints separately, thus leading to two set of
constraint actions, namely the (strictly named) reaction forces, and
the tying forces, respectively; for the sake of simplicity, the constraint
treatise is unified in the present contribution.

The simple four element, roof-like structure of Fig. 10 is employed
in the following to discuss the procedure that derives the elastic re-
sponse characterization for the structure from its elemental counter-
parts.

The structure comprises nine nodes, whose location in space is de-
fined according to a global reference system OXY Z, see Table 2.

42Unless otherwise specified, the displacement and force terms refer to the dofs,
and the suitable actions that perform work with their variation, respectively. They
are in fact generalized forces and displacements.

43in a previous version of this contribution, an equivalency was proposed between
the single dof vs. multi dof constraint characterization, and the external – i.e. to
ground – vs. internal classification. In fact, those classifications are disjoint, since, if
ground reactions are expected in the single dof case, legitimate multi dof constraint
exist – e.g. the hypothetical ug2 = vg5 – whose reactions are not self-equilibrated,
and hence require an external, ground intervention for their balancing.
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θe1n1 ı̂e1
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e1

e3

e2

e4

we1n2 k̂e1

θe1n1 ı̂e1

= ug2 ı̂g2 + vg2 ̂g2 + wg2 k̂g2

= θg1 ı̂g1 + ϕg1 ̂g1 + ψg1 k̂g1

k̂ı̂g∗
k̂g∗

̂g∗
ı̂

k̂
̂

ı̂
̂

k̂

Figure 10: A simple four-element, roof-like structure employed in dis-
cussing the assembly procedures. The elements are square, thick plates
whose angle with respect to the global XY plane is 30◦

node X Y Z

g1 −lc 0 +l
g2 0 +ls +l
g3 +lc 0 +l
g4 −lc 0 0
g5 0 +ls 0
g6 +lc 0 0
g7 −lc 0 −l
g8 0 +ls −l
g9 +lc 0 −l

Table 2: Nodal coordinates for the roof-like structure of Figure 10. l
is the element side length, c = cos 30◦ and s = sin 30◦
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Uni
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Φni

Ψni

uni vni wni θni ϕni ψni

i = 1 . . . 4

Figure 11: A representation of the stiffness matrix terms for each el-
ement in the example structure; the term magnitude is represented
through a linear grayscale, spanning from zero (white) to the peak
value (black).

n1 n2 n3 n4

e1 g1 g2 g5 g4
e2 g2 g3 g6 g5
e3 g4 g5 g8 g7
e4 g5 g6 g9 g8

Table 3: Element connectivity for the roof-like structure of Figure 10.
As an example, the node described by the local numbering e3n2 is
mapped to the global node g5.

The structure is composed by four, identical, four noded isopara-
metric shell elements, whose formulation is described in the preceding
section 0.3.

A grayscale, normalized representation of the element stiffness ma-
trix is shown in Figure 11, where the white to black colormap spans
from zero to the maximum in absolute value term.

The mapping between local, element based node numbering and
the global node numbering is reported in the connectivity Table 3.

Such i) local to global node numbering mapping, together with
ii) the change in reference system mentioned above, defines a set of
elemental dof mapping matrices, P ej , one each j-th element. Such
matrices are defined as follows: the i-th row the P ej matrix contains
the coefficients of the linear combination of global dofs that equates
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Figure 12: A grayscale representation of the terms of the four P ej

mapping matrices associated the elements of Fig. 10. The colormap
spans from white (zero) to black (one); the lighter and the darker
grey colors represent terms that equate in modulus sin 30◦ and cos 30◦,
respectively. 57
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the i local dof of the j-th element; an example is proposed in the
following to illustrate such relation.

With reference to the structure of Figure 10, we1n2 and θe1n1 re-
spectively represent the 10th and the 13th local degrees of freedom of
element 1.

Their global representation involves a subset of the g2 and g1 global
nodes dofs, respectively, namely

we1n2 = 〈k̂e1, ı̂g2〉ug2 + 〈k̂e1, ̂g2〉vg2 + 〈k̂e1, k̂g2〉wg2 (111)

θe1n1 = 〈̂ıe1, ı̂g1〉θg1 + 〈̂ıe1, ̂g1〉φg1 + 〈̂ıe1, k̂g1〉ψg1 (112)

where ı̂e1,̂e1, k̂e1 are the orientation vectors of the element 1 local
reference system, ı̂g1,̂g1,k̂g1 and ı̂g2,̂g2,k̂g2 are the orientation vectors
of the global nodes 1 and 2 reference systems, and 〈·, ·〉 represents
their mutual scalar product, or, equivalently, the cosinus of the angle
between two unit vectors.

The 10th and the 13th row of the P e1 mapping matrix are defined
based on Eqs.111 and 112, respectively, and they are null except for
the elements[

P e1

]
10,7

= 〈k̂e1, ı̂g2〉
[

P e1

]
13,4

= 〈̂ıe1, ı̂g1〉[
P e1

]
10,8

= 〈k̂e1, ̂g2〉
[

P e1

]
13,5

= 〈̂ıe1, ̂g1〉[
P e1

]
10,9

= 〈k̂e1, k̂g2〉
[

P e1

]
13,6

= 〈̂ıe1, k̂g1〉,

being ug2,vg2,wg2,θg1,φg1 and ψg1 the 7th, 8th, 9th, 4th, 5th and 6th
global degrees of freedom according to their position in d g.

Figure 12 presents a grayscale representation of the four P ej ma-
trices; please note the extremely sparse nature of those matrices, whose
number of nonzero terms scales with the single element dof cardinal-
ity, whereas the total number of terms scale with the whole structure
dof cardinality.

The rows of the rectangular P ej mapping matrix are mutually or-
thonormal; the mapping matrix is orthogonal in the sense of the Moore-
Penrose pseudoinverse, since its transpose and its pseudoinverse coin-
cide.

By resorting to the elemental dof mapping matrix artifice, the j-th
element dofs may be derived from their global counterpart as

d ej = P ej d g, ∀j. (113)
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Eq. 106 let us further derive the component of external actions that are
required by each j-th stretched element to oppose the its own elastic
reactions as

G ej = K ej P ej d g, ∀j; (114)

such a external action vector, which is still expressed in terms of the
local set of dofs, is now formulated as a function of the global displace-
ment vector. Those elemental external action components G ej may be
cast in terms of the global dof set based on the following virtual work
equivalency

δd >g G g←ej =
(

P ejδd g

)>
G ej , ∀ δd g (115)

where d g is a generic global virtual displacement, P ejδd g is the asso-
ciated virtual variation of the j-th element dofs, see Eq.113, and

G g←ej = P >ej G ej (116)

is the global counterpart of the local G ej nodal action vector.
Based on 106, 113 and 116, the contribution of the j-th element

to the elastic response of the structure may finally be described as the
vector of global force components

G g←ej = P >ej K ej P ej d g; (117)

that have to be applied at the structure dofs in order to equilibrate
the elastic reactions that arise at the nodes of the j-th element, if a
deformed configuration is prescribed for the latter according to the d g

global displacement mode.
By accumulating the contribution of the various elements in a struc-

ture, the overall relation is obtained

G g =
∑
j

G g←ej =

∑
j

P >ej K ej P ej︸ ︷︷ ︸
K g←ej

 d g = K g d g, (118)

that defines the K g global stiffness matrix as an assembly of the K g←ej

elemental contributions. The contribute accumulation at each sum-
matory step is graphically represented in Fig. 13, in the case of the
example structure of Fig. 10.
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The global stiffness matrix is symmetric, and it shows nonzero
terms at cells whose row and column indices are associate to two dofs
that are bridged by a direct elastic link – i.e., an element exists, that in-
sists on both the nodes those dofs pertain; since only a limited number
of elements insist on each given node, the matrix is sparse, as shown
in Fig. 13d.

An favourable numbering of the global nodes may be searched for,
such that the nonzero terms are clustered within a (possibly) nar-
row band around the diagonal; the resulting stiffness matrix is hence
banded, condition this that reduces both the storage memory require-
ments, and the computational effort in applying the various algebraic
operators to the matrix.

The stiffness matrix (half-)bandwidth may be predicted by evalu-
ating the bandwidth required for storing each element contribution

bej = (imax − imin + 1) l, (119)

and retaining the
b = max

ej
bej (120)

peak value; in the formula 119, l is the number of dof per element
node, whereas imax and imax are the extremal integer labels associated
to the element nodes, according to the global numbering.

0.6.3 External forces assembly

The element vector forces are accumulated to derive global external
forces vector F g, as in

F g =
∑
j

P >ej F ej ; (121)

the transposed P >ej mapping matrix is employed to translate the ac-
tions on the local dofs to their global counterpart.
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dg1 dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9

F g1

F g2

F g3

F g4

F g5

F g6

F g7

F g8

F g9

bsymm

(a) (b)

(c) (d)

Figure 13: Graphical representation of the assembly steps for the
stiffness matrix of the Fig. 10 structure. In (a), the K g←e1 term
is presented alone; the K g←e2, K g←e3 and K g←e4 are sequentially
accumulated, thus leading to (b), (c) and (d). In (d), the symmetric
and banded nature of the matrix is evidenced. The zero-initialized
form for the matrix that precedes the (a) step is omitted.
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0.7 Constraints.

0.7.1 A pedagogical example.

Figure 14 represents a simple, pedagogical example of a three d.o.f.
elastic system subject to a set of two kinematic constraints. The first,
I, embodies a typical multi d.o.f. constraint44, namely a 3:1 leverage
between the vertical displacements d3 and d1 The second, II, consists
in a single d.o.f., inhomogeneous constraint that imposes a fixed value
to the d2 vertical displacement.

Both the kinematic constraint may be cast in the same algebraic
form ∑

i

αji d i = α >j d = ∆j (122)

where j = I, II and i = 1 . . . 3 the indexes span through the constraints
and the model d.o.f.s, respectively, and the α j equation coefficient
vectors and inhomogeneous terms are

α >I =
[
3 0 1

]
∆I = 0

α >II =
[
0 1 0

]
∆II = 0.2

In the absence of constraints, viable system configurations span
the whole R3 space of Fig. 15 (a); viable configurations with respect to
the first constraint alone span the hyper-plane/subspace45 I, whereas
the subspace II collects the feasible configurations with respect to the
second constraint.

It is relevant to underline that the feasible configuration hyper-
planes I and II are normal to the associated coefficient vectors α I and
α II, respectively.

The I ∩ II intersection subspace collects the configurations that
satisfies both the constraints; such subspace is orthogonal to both α I

and α II.
If the constraints are assumed as ideal46, the exerted reactions are

orthogonal to the allowed displacements; reaction forces are confined on

44usually, and rather improperly, named multipoint constraint (MPC)
45The subspace of the feasible configurations with respect to a single, scalar linear

equation is an hyperplane in the configuration space; due to the limited d.o.f. set
cardinality, Figure 15 (a) represents a 2d plane within a 3d space. The hyper-
nomenclature is preserved to

46or, namely, frictionless
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d1

d2
d3

1:3

0.2 mm

0 d1 + 1 d2 + 0 d3 = 0.2
3 d1 − 0 d2 + 1 d3 = 0I:

II:(a)

(b)

Figure 14: A pedagogical elastic three d.o.f. system, (a), subject to a
few kinematic constraints (b).

a subspace of the reaction space that corresponds to47 the orthogonal
complement of the feasible subspace of the configuration space.

By moving on the constraint reaction space shown in 15 (b), the re-
action forces associated to constraint I and II are thus proportional to
the α I and α II vectors, respectively; the cumulative constraint reac-
tions lie on the linear span of those two vectors, namely span (α I, α II).

With reference to some concepts anticipated from the next para-
graph, we may set d1 as the only retained48 dof, thus leading to Λ
and ∆ terms equal to, respectively,

Λ =

 1
0
−3

 ∆ =

 0
0.2
0

 .,
whereas, according to the notation introduced to discuss the Lagrangian

47i.e. the two subspaces share, with adjusted physical dimensions, the same gen-
erator vectors.

48alternatively, d3 may be chosen for such a role.
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d1

d2

d3
R1

R2

R3

II

I

I ∩ II

(a) configuration space (b) reaction space

‖ αI

span (αI, αII),⊥ II, ‖ αII

⊥ I, ‖ αI

⊥ αI

⊥ αII

‖ I ∩ II

I ∩ II

‖ αII
⊥ (I ∩ II)

Figure 15: Allowed system configurations and constraint reactions for
the pedagogical example of Fig. 14. The allowed displacement sets
are easily derived as the homogenous counterpart of (a), and are not
represented here.

multiplier formulation, we have

E R =
[
1 0 0

]
Λ TR =

[
0
−3

]
E T =

[
0 1 0
0 0 1

]
L =

[
α II α I

]
∆ T =

[
∆II

∆I

]
.

0.7.2 General formulation

A set of m constraints

dj =
∑
di∈ d R

λjidi + ∆j (123)

is defined that states the linear49 dependence of a partition subset of
the d dofs, the dj tied ones, on the remaining di terms, that retain
their independent nature. The independent terms are collected within
a n −m reduced cardinality dof vector d R, and they are referred to
as the retained ones50. Similarly, the m tied dof are collected in the
d T vector.

49more precisely, linear variation dependence, due to the presence of the inhomo-
geneous term.

50Here, the definition of the overall, retained, and tied dof vectors, ( d , d R,
d T = d \ d R, respectively) is overloaded with both its dof and dof index (ordered)
set counterparts, thus allowing e.g. the di ∈ d R notation in a vector element
context, and the i ∈ d R notation in an integer index context.
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Also an inhomogeneous ∆j term is provided for each of the Eqns.
123 in order to accommodate constraints of the nonzero fixed displace-
ment kind, or inhomogeneous in general.

We now define a permutation matrix E that segregates the retained
and the tied d elements at the head and at the tail of a reordered dof
vector, as in[

d R

d T

]
=

[
E R

E T

]
︸ ︷︷ ︸

E

d d =
[

E >R E >T
]︸ ︷︷ ︸

E>≡E−1

[
d R

d T

]
,

where the E block partitioning is s.t.

d R = E R d d T = E T d ,

and where the inverse relation is obtained based on the permutation
matrix orthogonality.

By creating a m rows, n − m columns matrix Λ TR out of the
λji factors, and by stacking the ∆j inhomogeneous terms into a ∆ R

column vector, the following alternative expression is obtained for the
Eqns. 123

d T = Λ TR d R + ∆ T (124)

or, by abandoning the tied/retained dof labeling and segregation,([
−Λ TR I

]
E
)

d = L > d = ∆ T. (125)

In the above, the m rows, n columns L matrix is also defined which
will be of employed below.

The following algebraic relation may even51 be derived, that defines
the initial, unabridged d dof vector terms based on the subset that
produces the retained dof vector d R

d =

(
E >

[
I

Λ TR

])
d R +

(
E >

[
0

∆ T

])
= Λ d R + ∆ ; (126)

the ∆ n-sized column vector collects the various ∆j terms of the 123
constraint equations, and the n rows, n−m columns Λ matrix collects

51The author is really sorry for the prolification of the defined symbols, which
all carry, in slightly different forms and for slightly different purposes, the same
information.
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=

dl 1

dRh

0

dk λjk = 0

+

0

∆k = d̄k

di ∆jλji

retained dof.

tied dof.

tied dof.

dk = d̄k
fix.disp. kind

general

dl = dRh

Λd = dR + ∆

h

l

k

i

Figure 16: Graphical representation for the Λ matrix in Eq. 126;
representative matrix rows are illustrated for a retained dof, and for
two tied dofs, namely a fixed displacement subcase, and the general
case.

• the identity relations between corresponding retained dofs terms
that appear in both d and d R, and

• the λji coefficients that define the linear variation dependence of
the tied dj dof on the retained di dof.

Figure 16 illustrates a few representatives of the rows whose assem-
bly defines the Λ . In the case of a retained global dof, dl, which finds

a counterpart in the h-th element of d R, = dR
h , the associated row

contains a single unit term at of the intersection of the l-th row with
the h-th column, being zero elsewhere. In the case of a tied dof of the
plain fixed displacement kind (single dof constraint), the associated
row in Λ is null, and the associated inhomogeneous term in ∆ equates
the imposed value for the displacement. In the case of a tied dof of
the general kind, see Eq. 126, the associated row in the Λ matrix is
build upon the λji linear relation coefficients.

It is finally worth to mention that the virtual displacements in the
neighborhood of a feasible constrained configuration are restricted to
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the linear combinations of the Λ matrix columns Λ j , i.e.

δd = Λ δdR = Λ 1 δd
R
1 + Λ 2 δd

R
2 + . . . (127)

with arbitrary virtual displacement values δdRj for the retained dof
alone.

The ideal constraint hypothesis requires the reaction force vector R
to be orthogonal to a generic virtual displacement, and such condition
hods if and only if R is orthogonal to each the Λ matrix columns, i.e.

〈Λ j , R 〉 = 0 ∀j, (128)

or, equivalently,
Λ >R = 0 . (129)

Also, the homogeneous counterpart of 125 hold for the same virtual
displacements, namely

L >δd = 0 , (130)

to be orthogonal to the L matrix columns, but otherwise free; the
linear span of those columns thus contains all and the only reaction
vectors that are orthogonal (and, in particular work-orthogonal) to
any feasible virtual displacement. We hence have that the variation of
the m terms of a ` column vector makes

R = −L ` , (131)

span all the allowed ideal constraint reaction subspace52.
Due to their role in defining the L matrix, the λji coefficients that

drive the homogeneous part of Eqs. 123 kinematic relations also rule
the allowed internal and external reaction forces. In particular, for
each j-th tied dof (j ∈ d T) a parametric constraint reaction R j is
raised in the form

Rjj = −`j
Rjk = 0 k ∈ d T \ {j}
Rji = λji`j i ∈ d R,

(132)

to enforce the associated equation; the overall reaction force vector R
is obtained as the accumulation of the R j contributions. The `j factors
may be obtained from the solution of the equilibrium equations.

52the inclusion of a minus sign does not really require a justification, due to the
arbitrary nature of ` .
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0.8 The system of constrained equilibrium equa-
tions, and its solution.

The nodal dof equilibrium equations derived by pairing i) the K d
external forces required to keep the structure in a d deformed configu-
ration, see Eq. 118, ii) the actual external forces F which are applied
to the elements as distributed loads, see Eq. 121, or directly at nodes
in form of concentrated loads, and iii) the reaction forces R may be
cast as

K d = F + R . (133)

Here, d and R are both unknown.
If constraints are applied, we have

K
(

Λ d R + ∆
)

= F + R (134)

and
K Λ d R =

(
F − K ∆

)
+ R , (135)

where the inhomogeneous part of the constraint equations is de facto
assimilated to a further contribution to the external loads, which may
be rationalized as the elastic nodal reactions raised when i) all the
retained dof are kept fixed at their initial position, and ii) each tied
dof is displaced of an amount equal to the inhomogeneous term of the
tying equation.

By projecting the equations on the subspace of allowed configura-
tions

Λ >K Λ︸ ︷︷ ︸
K R

d R = Λ >
(

F − K ∆
)︸ ︷︷ ︸

F R

+ Λ >R︸ ︷︷ ︸
=0

, (136)

the contribution of the unknown reaction forces, that are normal to
such a subspace – see Eq. 129, vanishes.

The linear system of constrained nodal dof equilibrium equations
is then set as

K R d R = F R (137)

and it may be solved for the retained dof vector d R.
Once the solution vector d ∗R is found in terms of displacements

at retained dofs, the overall displacement vector and the unknown
reaction forces may be derived as

d ∗ = Λ d ∗R + ∆ ; (138)
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and
R ∗ = K

(
Λ d ∗R + ∆

)
− F . (139)

0.9 An alternative constraining formulation

which reveals itself consistent with the Lagrange multiplier technique
for constrained minimization.

Differences with respect to the previous one are:

• more classical and widespread in literature;

• constraint equations are treated as, indeed, equations, and not as
dof assignments; in particular the dofs are not to be partitioned
into the tied/retained sets. Such a distinction is however a fact
in actual implementations;

• the order of the system of equations to be solved is augmented
(vs. reduced) of one unit for each added constraint; the impact
on the matrix bandwidth is however analogous;

• the assembled stiffness matrix is bordered with further minors,
but not otherwise manipulated;

• the basis for the reaction force vectors clearly appears from the
formulation.

The Eq. 131 form for the reaction forces is substituted within the
nodal equilibrium equations 133, thus obtaining the following

K d + L ` = F

under-determined system of n equations in the n + m unknowns d
and ` . By appending the m constraint equations 125, cardinality
consistency between equation number and unknowns is restored, thus
leading to the linear system of equations[

K L
L > 0

] [
d
`

]
=

[
F

∆ T

]
, (140)

whose order is n+m.
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The educated reader might recognise in 140 the system of equations
associated to the retrieval of the stationary point in the d , ` variables
of the following quadratic form

1

2
d >K d − d > F + ` >

(
L > d − ∆ T

)
, (141)

which in turn represents – according to the Lagrange multiplier tech-
nique – the minimization of the total potential energy of a linearly
elastic system

1

2
d >K d − d > F

i.e. the sum of i) internal strain energy, and ii) the unexerted work
aka. the potential of the external forces, subject to the

L > d − ∆ T = 0

kinematic constraints, being ` the vector obtained by stacking the
Lagrange multipliers.

0.10 Retrieval of element based results

Once the problem is solved in terms of the d ∗ structure nodal displace-
ments, we may extract for each j-th element the associated local dofs
vector as

d ∗ej = P ej d ∗. (142)

We may in turn derive the strains at the reference plane, and the
curvatures as

e = B e
ej(ξ, η) d ∗ej κ = B κ

ej(ξ, η) d ∗ej (143)

or directly the tt, ip strain components as

ε =
(

B e
ej(ξ, η) + B κ

ej(ξ, η)z
)

d ∗ej . (144)

ip stresses may be then derived according to the material constitutive
law, see Eq. 13. The oop tranverse shear strain components may be
derived as

γ z = B γ
ej(ξ, η) d ∗ej . (145)

All the cited quantities are customarily sampled at the gaussian inte-
gration points, and possibly extrapolated at nodes.
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0.11 Notable Multi Point Constraints

0.11.1 Rigid body link RBE2

A master (or retained, control, independent, etc.) C node is consid-
ered, whose coordinates are defined as xC , yC , zC in a (typically) global
reference system, along with a set of n Pi nodes whose coordinates are
xi, yi, zi.

A kinematic link is to be established such that the dofs – or a
subset of them – associated to the Pi nodes follow the rototranslations
of the C control according to the rigid body motion laws.

In the case of a fully constrained Pi node we have

ui
vi
wi
θi
φi
ψi

 =



1 0 0 0 +(zi − zC) −(yi − yC)
0 1 0 −(zi − zC) 0 +(xi − xC)
0 0 1 +(yi − yC) −(xi − xC) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

L i

·



uC
vC
wC
θC
φC
ψC


(146)

where u, v, w (θ, φ, ψ) are the translation (rotation) vector components
with respect to the x, y, z cartesian reference system. A subset of the
above dof dependency relations may be cast to obtain a partial con-
straining of the Pi node; a free relative motion of such node with respect
to the rigid body is allowed at the unconstrained dofs.

External actions that are applied to tied Pi dofs are reduced to
the master node in form of a statically equivalent counterpart; the
contributions deriving from each Pi node are finally accumulated.

0.11.2 Distributed load / averaged motion link RBE3

A reference C node, whose coordinates are xC , yC , zC . A distribu-
tion of n weighted nodes Pi, qi is considered, whose coordinates are
xi, yi, zi. The nodal weight qi is usually determined with some degree
of arbitrariness, e.g. based on partitioning the attached elements into
nodal influence domains, and associating to each node a weight which
is proportional to pertaining volumes, areas or edge lengths.
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The RBE3 multi-dof constraint may be described based on i) the
imposed kinematic relations and ii) on the nature of the associated
reaction force.

Starting from the latter, a generic load applied at C, namely three
force components UC , VC ,WC and three moment components ΩC ,ΦC ,ΨC .
A suitable set of reaction forces is induced that balance at C the applied
actions, and distributes them at the Pi nodes based on the relationUiVi

Wi

 = qi

ab
c

+

 0 d −f
−d 0 e
f −e 0

xiyi
zi

 , (147)

with a, b, c, d, e, f coefficients that are defined based on the static equiv-
alence of the applied load at C, and its distributed counterpart; in
particular the system of six linear equationsUCVC

WC

 =
∑
i

UiVi
Wi

 ,
ΘC

ΦC

ΨC

 =
∑
i

UiVi
Wi

 ∧
xi − xCyi − yC
zi − zC

 (148)

is solved for the aforementioned unknown parameters.
In the case a reference system is employed whose x, y, z axis are

principal of inertia with respect to the same distribution, a more sub-
stantial description may be provided as follows... TODO.
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