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Restrained Warping

The typical torsion stresses according to De Saint Venant only occur if warping can
take place freely (Fig. 1). In engineering practice this rarely is the case. Warping can
be restrained at supports, for example, a steel I-beam welded on a thick plate (Fig. 1,
2). Warping is also restrained at the position of an imposed torsion moment loading.
The reason is that the loading gives a jump in the internal torsion moment M, , which

would give a jump in the warping if it could occur freely. Clearly, the sections left and
right of the loading are attached, so warping there is restrained. Warping is also
restrained where the cross-section changes (non-prismatic beams). Therefore,
deviations from the torsion theory occur. If warping is completely prevented the local
torsion stiffness Gl is equal to Gl ;.

Figure 1. Free warping (a) and restrained warping (b) of an I-section loaded in torsion.

Figure 2. Prevented warping of a I-beam end

Another restriction of the Saint Venant theory is that a distributed moment m, cannot
occur (Fig. 3).
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Figure 3. Distributed torsion moment loading on a channel due to hollow-core slabs

When warping is prevented locally axial stresses are introduced. These stresses
diminish with the distance from the restrained but are noticeable over a considerable
length of the beam. In solid and thin wall closed sections these stresses can often be
neglected. However, in thin wall open sections these axial stresses can be large.
Moreover, the stiffness of thin wall open sections is strongly increased due to warping
restraints.

Differential Equation

In 1940, V.Z. Vlasov developed a torsion theory in which restrained warping is
included [9]. This theory is also called “warping torsion” or “non-uniform torsion”.
Next to this the torsion theory of De Saint Venant is also called “circulatory torsion”
or “uniform torsion”. In the theory of Vlasov the specific torsion 6 is not constant
along the x-axis. The rotation ¢ of the beam cross-section follows from the

differential equation
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where Gl is the torsion stiffness, EC,,is the warping stiffness and m, is a distributed
torsion moment along the beam. The warping constant C,, has the unit m® and is
defined as

Cw=jw2dA-
A

The bi-moment is defined as

B=—[oydA.
A



It occurs in a cross-section when warping is restrained. It has the unusual unit Nm2.

For I-sections the bi-moment B can be interpreted as the moment M in each of the
flanges times their distance a (Fig. 4). For other sections the interpretation is not this
simple. In general the bi-moment is the distribution of axial stresses that is needed to
reduce the warping of the section.

m
Figure 4. Bi-moment in an I-section

At the boundary either the rotation ¢ is imposed or the torsion moment loading M is

imposed. At the same time the warping % or the bi-moment B is imposed.
X
Examples of boundary conditions are.
Fixed support, No rotation and no warping ¢ =0, % =0
X

Fork support, No rotation and free warping ¢ =0, B=0
Free end, Free rotation and free warping M; =0, B=0

dch
B=-EC,—
ax?
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dx dx

The Vlasov theory reduces to the theory of De Saint Venant if the warping stiffness is
zero, the distributed moment is zero and warping is free.

Example of a Box-girder bridge

A box-girder bridge has a length | = 60 m. The cross-section dimensions and
properties are shown in Figure 5.* The concrete Young’s modulus is E = 0.30 10"
N/mz2 and Poisson’s ratio v = 0.15. At both ends the bridge is supported while warping
is free. In the middle the bridge is loaded by a torque T = 269 10°> Nm. This loading
occurs when the bridge is supported at mid span by two temporary columns of which
one fails due to an accident. Therefore, the torque T is due to the support reaction of
the remaining temporary column.

1 This example is adapted from lecture notes by dr.ir. C. van der Veen on reinforced and prestressed concrete design

for the Dutch Concrete Association.
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Figure 5. Bridge cross-section
Due to symmetry we consider half the bridge.

The boundary conditions at the support x = 0 are

2
¢=0, d—‘z'):o.
dx

The boundary conditions in the middle x = %I are

do d 1. do
G, 20 _gc 4@ _1p 9o _4
th CWdX3 2 dx

The differential equation is solved by Maple (Appendix 1) (Figure 6, 7 en 8).

_.— 15010 Tad
De Saint Venant P
\//

140 10°rad
Vlasov

Figure 6. Rotation ¢

13510° Nm

135 105 De Saint Venant en Vlasov

Figure 7. Torsion moment distribution M




Figure 8. Bi-moment distribution B
Vlasov Stresses

The stress distribution in the Vlasov theory consists of three parts. 1) the shear stress
according to the theory of De Saint Venant, 2) shear stress due to restrained warping
en 3) axial stresses due to restrained warping. In general the largest values of the parts
occur at different locations in a cross-section. Therefore, software is needed for
locating the decisive stress. This is even more so if also stresses occur due to 4) axial
force N, 5) moment M in the y-direction, 6) moment M in the z-direction, 7) shear

Vyin the y-direction and 8) shear V,in the z-direction.

If y and z are the principal directions of the cross-section than the axial stresses are
calculated by

For the shear stresses in thin wall cross-sections also formulas exist. However, these
are to elaborate to include in this text. As far as the author knows no formulas exist
for the shear stresses o,y and o, due to restrained warping in solid cross-sections

exist.
Example on Stresses in a Box-girder Bridge

We consider the box-girder bridge of the previous example. Using the program
ShapeBuilder we can compute the warping functiony and the torsion properties I
and C,, of the cross-section (Fig. 9). The largest value of y is 51182 cm? in the right-
hand lower corner of the box-grider. Previously the largest bi-moment

B =2821 10* Nm?was calculated (Fig. 8). The associated largest axial stress due to
warping is

4 2
B 22821 10NM” 5116112 _ 366 108 N/m? = 3.66 N/mm?

Oy =—V
Xy 39.44 m®

This is small compared to stresses due to bending. Generally, in solid and closed
sections the stresses due to restrained warping can often be neglected. For thin wall
open sections these stresses often cannot be neglected.
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Figure 9. Warping function  of the bridge

Example of Stresses in a Thin Wall Beam

We consider the cross-section of Figure 23. The beam is fixed at one end at which
warping is prevented. At the other end the beam is loaded by a torque T while
warping can occur freely [11]. The material and cross-section data of the beam are

E = 207000 N/mm?, G = 79300 N/mm?, 1, = 278000 mm*and C,, =191 108 mm®.
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Figuur 10. Thin wall beam
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Figure 11. Stresses in the thin wall beam [11]

Figure 11 shows the Vlasov stresses that occur at the beam support. The Saint Venant
stresses occur at the loaded end of the beam. Note that the largest Vlasov axial
stress o, is much larger than the largest Saint Venant shear stressc,g (in absolute

sense). The Vlasov shear stresses o,gare small, nonetheless the moment which they
produce is equal to the loading T.

Software

In frame programs that use the Vlasov theory not only the torsion stiffness Gl; but
also the warping stiffness EC,, of every member needs to be known. Table 10 gives

the torsion properties of some thin wall cross-sections. In addition we need to enter
whether the warping is prevented, coupled or free in each member end.

In the appendix the stiffness matrix is included for implementing the Vlasov theory in
a frame analysis program. A degree of freedom — the warping — and a loading — the
bi-moment — need to be added to the program for every element end.
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Table 10. Torsion properties of thin wall cross-sections [10]. Note that J is the torsion
constant I .

Trick

By far most frame analysis programs apply the torsion theory of De Saint Venant
There is a trick to include the effect of restrained warping in these programs. When
both member ends cannot warp the torsion stiffness needs to be multiplied by an
enlargement factor

B
52 B>5.

When one of the member ends cannot warp the torsion stiffness needs to be multiplied
by the factor



10.

11.

12.

B
51 B>3.

These formulas are 1% accurate. For small values of {3 also exact formulas exist in
reference [12]. In these formulas the distributed torsion moment loading is not present
m, = 0. For coupled warping no trick exists.

Safe or Unsafe?

Almost all frame programs in practice use De Saint Venant torsion theory ignoring
the effects of restraint warping. In this chapter it was shown that real structures are
stiffer than the torsion theory of De Saint Venant assumes. Therefore, the real
deformations will be smaller than the computed ones. Consequently, for the
serviceability limit state the traditional frame analysis is safe.

Also it was shown that locally the stresses can be much larger than the Saint Venant
predicts. However, this does not mean that the involved structural member will
collapse. After all, many structural materials are somewhat plastic (steel, timber,
reinforced concrete). According to plasticity theory every equilibrium system that
does not violate the yield strength is a safe approximation of the carrying capacity of
the structure. A linear elastic computation according to the theory of De Saint Venant
is such an equilibrium system. Consequently, also for the ultimate limit state the
traditional frame analysis is safe.
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Appendix 1

Maple calculation of the differential equation of the box-girder bridge

> restart:

> 1:=60: # [m]
>ECw:=1183e9: # [Nm4]
>Glw:-=2690e8: # [Nm2]
>mx:=0: # [Nm/m]
> T:=269e5: # [Nm]

>

>with(DEtools):

> ODE:=ECw*difFF(phi (X),X,X,X,X)-Glw*diFF(phi(x),x,Xx)=mx;
4 2
ODE :=.1183 10*® i4¢(x) —.2690 10*2 a—zq)(x) =0
OX OX

>bound_con:= phi(0)=0, (D@@2)(phi)(0)=0, Glw*D(phi)(1/2)-
ECw*(D@@3) (phi) (172)=T/2, D(phi)(1/2)=0;

bound_con := ¢(0) =0, (D*)(4)(0) =0,
2690 10* D(¢)(30) —.1183 10* (D(g))(¢)(30) =.1345000000 108 D($)(30) =0

> evalf(dsolve({ODE,bound_con},{phi(x)}));
$(x) =.00005000000000 x + .6423299796 100 e

— 6423299796 1071° e(-4768521749 X)

> phi :=0.5000000000e-4*x-0.6423299796e-
10*exp(0.4768521749*x)+0.6423299796e-10*exp(-0.4768521749*x) :
> Mo:=-ECw*difF(phi,x,Xx):
> Mw:=Re(Glw*diff(phi,x)+diff(Mo,x)):
>plot(phi(x),x=0..1/2);

0.00144

(-.4768521749 X)
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>plot(Mw,x=0..1/2);

10



13450000.54

13450000

13445999 59

1344505994
0

>plot(Mo,x=0..1/2);

2.5eH17
2e+171
1.5e+17
1e+17

SeHl5

0

5 10 15 20 25 0
X

>x:=1/2: simplify(Mo); simplify(phi);

.2820580643 108
.001395145701
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Appendix 2

Stiffness Matrix for the Vlasov Torsion Theory
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dx
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