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Restrained Warping 
 
The typical torsion stresses according to De Saint Venant only occur if warping can 
take place freely (Fig. 1). In engineering practice this rarely is the case. Warping can 
be restrained at supports, for example, a steel I-beam welded on a thick plate (Fig. 1, 
2). Warping is also restrained at the position of an imposed torsion moment loading. 
The reason is that the loading gives a jump in the internal torsion moment tM , which 
would give a jump in the warping if it could occur freely. Clearly, the sections left and 
right of the loading are attached, so warping there is restrained. Warping is also 
restrained where the cross-section changes (non-prismatic beams). Therefore, 
deviations from the torsion theory occur. If warping is completely prevented the local 
torsion stiffness is equal to . tGI pGI
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Figure 1. Free warping (a) and restrained warping (b) of an I-section loaded in torsion. 
 
 

 
 
Figure 2. Prevented warping of a I-beam end 
 
Another restriction of the Saint Venant theory is that a distributed moment xm  cannot 
occur (Fig. 3). 
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Figure 3. Distributed torsion moment loading on a channel due to hollow-core slabs 
 
When warping is prevented locally axial stresses are introduced. These stresses 
diminish with the distance from the restrained but are noticeable over a considerable 
length of the beam. In solid and thin wall closed sections these stresses can often be 
neglected. However, in thin wall open sections these axial stresses can be large. 
Moreover, the stiffness of thin wall open sections is strongly increased due to warping 
restraints. 
 
Differential Equation 
 
In 1940, V.Z. Vlasov developed a torsion theory in which restrained warping is 
included [9]. This theory is also called “warping torsion” or “non-uniform torsion”. 
Next to this the torsion theory of De Saint Venant is also called “circulatory torsion” 
or “uniform torsion”. In the theory of Vlasov the specific torsion θ is not constant 
along the x-axis. The rotation ϕ of the beam cross-section follows from the 
differential equation 
 

4 2

4 2w t
d dEC GI m
dx dx

ϕ ϕ
− = x , 

 
where is the torsion stiffness, is the warping stiffness and tGI wEC xm  is a distributed 
torsion moment along the beam. The warping constant has the unit mwC 6 and is 
defined as 
 

2= ψ∫w
A

C dA . 

 
The bi-moment is defined as 
 

= − σ ψ∫ xx
A

B dA . 
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It occurs in a cross-section when warping is restrained. It has the unusual unit Nm². 
 
For I-sections the bi-moment B can be interpreted as the moment M in each of the 
flanges times their distance a (Fig. 4). For other sections the interpretation is not this 
simple. In general the bi-moment is the distribution of axial stresses that is needed to 
reduce the warping of the section. 
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Figure 4. Bi-moment in an I-section 
 
At the boundary either the rotation ϕ  is imposed or the torsion moment loading tM  is 

imposed. At the same time the warping ϕd
dx

 or the bi-moment B is imposed. 

Examples of boundary conditions are. 

Fixed support, No rotation and no warping 0, 0d
dx
ϕ

ϕ = =  

Fork support, No rotation and free warping 0, 0ϕ = =B   
Free end, Free rotation and free warping 0, 0= =tM B   
 

2

2
ϕ

= − w
dB EC
dx

 

ϕ
= +t t

d dM GI
dx dx

B

                                                

 

 
The Vlasov theory reduces to the theory of De Saint Venant if the warping stiffness is 
zero, the distributed moment is zero and warping is free. 
 
Example of a Box-girder bridge 
 
A box-girder bridge has a length l  = 60 m. The cross-section dimensions and 
properties are shown in Figure 5.1 The concrete Young’s modulus is E = 0.30 1011 
N/m² and Poisson’s ratio ν = 0.15. At both ends the bridge is supported while warping 
is free. In the middle the bridge is loaded by a torque T = 269 105 Nm. This loading 
occurs when the bridge is supported at mid span by two temporary columns of which 
one fails due to an accident. Therefore, the torque T is due to the support reaction of 
the remaining temporary column. 

 
1 This example is adapted from lecture notes by dr.ir. C. van der Veen on reinforced and prestressed concrete design 

for the Dutch Concrete Association. 
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Figure 5. Bridge cross-section 
 
Due to symmetry we consider half the bridge. 
 

l
2

l 
2 

T  
The boundary conditions at the support x = 0 are 

2

20, 0d
dx

ϕ
ϕ = = . 

The boundary conditions in the middle x = 1
2 l  are 

 
3

1
3 2 , 0t w

d d dGI EC T
dx dxdx
ϕ ϕ ϕ

− = = . 

 
The differential equation is solved by Maple (Appendix 1) (Figure 6, 7 en 8). 
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Figure 7. Torsion moment distribution tM  
 

Vlasov

2821 10   Nm4 2

Vlasov

2821 10   Nm4 2

 

 4



Figure 8. Bi-moment distribution B 
 
Vlasov Stresses 
 
The stress distribution in the Vlasov theory consists of three parts. 1) the shear stress 
according to the theory of De Saint Venant, 2) shear stress due to restrained warping 
en 3) axial stresses due to restrained warping. In general the largest values of the parts 
occur at different locations in a cross-section. Therefore, software is needed for 
locating the decisive stress. This is even more so if also stresses occur due to 4) axial 
force , 5) moment N yM in the y-direction, 6) moment zM in the z-direction, 7) shear 

yV in the y-direction and 8) shear in the z-direction. zV
 
If y and z are the principal directions of the cross-section than the axial stresses are 
calculated by 

σ = + − + ψy z
xx

y z w

M MN Bz y
A I I C

 

 
For the shear stresses in thin wall cross-sections also formulas exist. However, these 
are to elaborate to include in this text. As far as the author knows no formulas exist 
for the shear stresses σxy and σxz  due to restrained warping in solid cross-sections 
exist. 
 
Example on Stresses in a Box-girder Bridge 
 
We consider the box-girder bridge of the previous example. Using the program 
ShapeBuilder we can compute the warping function ψ  and the torsion properties tI  
and  of the cross-section (Fig. 9). The largest value of wC ψ  is 51182 cm² in the right-
hand lower corner of the box-grider. Previously the largest bi-moment 

was calculated (Fig. 8). The associated largest axial stress due to 
warping is 

42821 10 Nm=B 2

 
4 2

2 6 2
6

2821 10 Nm 5.118 m 3.66 10 N/m 3.66 N/mm
39.44 m

σ = ψ = = =xx
w

B
C

2  

 
This is small compared to stresses due to bending. Generally, in solid and closed 
sections the stresses due to restrained warping can often be neglected. For thin wall 
open sections these stresses often cannot be neglected. 
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Figure 9. Warping function ψ  of the bridge 
 
Example of Stresses in a Thin Wall Beam 
 
We consider the cross-section of Figure 23. The beam is fixed at one end at which 
warping is prevented. At the other end the beam is loaded by a torque T while 
warping can occur freely [11]. The material and cross-section data of the beam are 

, and . 2 2207000 N/mm , 79300 N/mmE G= = 4278000 mmtI = 8 6191 10 mmwC =

12,7 267 mm

108

51

T = 2,26 kNm2540 mm

12,7 267 mm

108

51

T = 2,26 kNm2540 mm

 
 
Figuur 10. Thin wall beam 
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Figure 11. Stresses in the thin wall beam [11] 
 
Figure 11 shows the Vlasov stresses that occur at the beam support. The Saint Venant 
stresses occur at the loaded end of the beam. Note that the largest Vlasov axial 
stress xxσ is much larger than the largest Saint Venant shear stress xsσ  (in absolute 
sense). The Vlasov shear stresses xsσ are small, nonetheless the moment which they 
produce is equal to the loading T.  
 
Software 
 
In frame programs that use the Vlasov theory not only the torsion stiffness  but 
also the warping stiffness  of every member needs to be known. Table 10 gives 
the torsion properties of some thin wall cross-sections. In addition we need to enter 
whether the warping is prevented, coupled or free in each member end. 

tGI

wEC

 
In the appendix the stiffness matrix is included for implementing the Vlasov theory in 
a frame analysis program. A degree of freedom – the warping – and a loading – the 
bi-moment – need to be added to the program for every element end. 
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Table 10. Torsion properties of thin wall cross-sections [10]. Note that J is the torsion 
constant tI . 
 
Trick 
 
By far most frame analysis programs apply the torsion theory of De Saint Venant 
There is a trick to include the effect of restrained warping in these programs. When 
both member ends cannot warp the torsion stiffness needs to be multiplied by an 
enlargement factor 
 

5
2

β
β >

β −
. 

 
When one of the member ends cannot warp the torsion stiffness needs to be multiplied 
by the factor 
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3
1

β
β >

β −
. 

 
These formulas are 1% accurate. For small values of β also exact formulas exist in 
reference [12]. In these formulas the distributed torsion moment loading is not present 

. For coupled warping no trick exists. 0xm =
 
Safe or Unsafe? 
 
Almost all frame programs in practice use De Saint Venant torsion theory ignoring 
the effects of restraint warping. In this chapter it was shown that real structures are 
stiffer than the torsion theory of De Saint Venant assumes. Therefore, the real 
deformations will be smaller than the computed ones. Consequently, for the 
serviceability limit state the traditional frame analysis is safe. 
 
Also it was shown that locally the stresses can be much larger than the Saint Venant 
predicts. However, this does not mean that the involved structural member will 
collapse. After all, many structural materials are somewhat plastic (steel, timber, 
reinforced concrete). According to plasticity theory every equilibrium system that 
does not violate the yield strength is a safe approximation of the carrying capacity of 
the structure. A linear elastic computation according to the theory of De Saint Venant 
is such an equilibrium system. Consequently, also for the ultimate limit state the 
traditional frame analysis is safe. 
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Appendix 1 
 
Maple calculation of the differential equation of the box-girder bridge 
 
> restart:
> l:=60:        # [m]
> ECw:=1183e9:  # [Nm4] 
> GIw:=2690e8:  # [Nm2]
> mx:=0:        # [Nm/m]
> T:=269e5:     # [Nm]
>  
> with(DEtools):
> ODE:=ECw*diff(phi(x),x,x,x,x)-GIw*diff(phi(x),x,x)=mx;

 := ODE  =  − .1183 1013 ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂4

x4 ( )φ x .2690 1012 ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2 ( )φ x 0  

> bound_con:= phi(0)=0, (D@@2)(phi)(0)=0, GIw*D(phi)(l/2)-
ECw*(D@@3)(phi)(l/2)=T/2, D(phi)(l/2)=0;

bound_con  = ( )φ 0 0  = ( )( )( )D
( )2

φ 0 0, , := 

 =  − .2690 1012 ( )( )D φ 30 .1183 1013 ( )( )( )D
( )3

φ 30 .1345000000 108  = ( )( )D φ 30 0,  

> evalf(dsolve({ODE,bound_con},{phi(x)}));

( )φ x .00005000000000 x .6423299796 10-10 e
( )−.4768521749 x

 +  = 

.6423299796 10-10 e
( ).4768521749 x

 −  

> phi:=0.5000000000e-4*x-0.6423299796e-
10*exp(0.4768521749*x)+0.6423299796e-10*exp(-0.4768521749*x):
> Mo:=-ECw*diff(phi,x,x):
> Mw:=Re(GIw*diff(phi,x)+diff(Mo,x)):
> plot(phi(x),x=0..l/2);

 
> plot(Mw,x=0..l/2);
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> plot(Mo,x=0..l/2);

 
> x:=l/2: simplify(Mo); simplify(phi);

.2820580643 108
 

.001395145701  
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Appendix 2 

 
Stiffness Matrix for the Vlasov Torsion Theory 
 

1 1 1 1

2 2 2 2

0 , , ,

, , ,

ϕ
= → ϕ = ϕ θ = = − =

ϕ
= → ϕ = ϕ θ = = = −

t

t
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dx

B B
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